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Abstract
Copepods that catch prey using feeding currents beat their cephalic appendages to generate flow entrainment,

and detect the presence of nearby prey through the mechanoreceptional setae on the antennules and other
appendages. It remains unclear whether the feeding current can be used by the copepod to gain information
about its surroundings by sensing when the current is disturbed by nearby particles. In this article, we present a
numerical model to address how much the presence of free-floating prey can alter the feeding current velocity
field, and how these prey-induced disturbances modify setal deformation patterns. We prescribe the beating stro-
kes of the feeding appendages, and quantify the changes in the bending flows across the setae and setal deforma-
tions due to the prey entrainment. We find that, first, the seta bends more due to the time-averaged velocity
component of the feeding current, while filtering out the oscillatory component. Second, 100 μm diameter free-
floating prey do not induce any noticeable change in deformations of the proximal and distal setae unless they
are less than 10 or 5.5 prey radii from the antennules, respectively. Larger prey cause bigger flow disturbances than
small prey, which are expected to be even harder to detect. Last, if setae are responsive to changes in deformation
relative to the deformations in the absence of prey, the distal seta may have long-ranged sensitivity to assist in
detection of prey near the proximal seta, but if setae are responsive to absolute changes in deformation, both setae
have very short-ranged sensitivity.

Feeding-current and cruise feeding copepods achieve prey
detection by beating their cephalic appendages, pulling both
motile and free-floating planktonic prey toward their mouth-
part (Koehl and Strickler 1981; Strickler 1982), and sensing
their presence through the mechanoreceptional and/or
chemoreceptional setae protruding from the antennules and
other appendages (Strickler and Bal 1973; Yen et al. 1992;
Paffenhöfer and Loyd 1999). Mechanoreception is postulated
to be more efficient than chemoreception for feeding-current
feeding copepods (Gonçalves and Kiørboe 2015). The mecha-
noreception of copepods starts when the prey-induced
signal—either hydrodynamic disturbance or direct contact
(Paffenhöfer and Van Sant 1985; Kjellerup and Kiørboe 2012;

Kiørboe et al. 2014)—bends the thin long mechanoreceptional
seta to a certain extent (Fields et al. 2002). Setal deformation is
then transformed into neurophysiological signals through
mechanotransduction, in which opening of mechano-gated
microchannels perforating the membrane of the dendrite
attached to the cuticle at the setal root leads to an electric
potential across the neuron (Weatherby et al. 1994; Weath-
erby and Lenz 2000). While motile prey can bend the setae
via the larger flow disturbances generated by their swimming
strokes, it is not clear if free-floating prey in the feeding cur-
rent is hydrodynamically conspicuous (Visser 2001). It has
been proposed that the feeding current could be used to aid
detection of nearby particles; since the feeding current is a pre-
dictable background flow, any changes in the background flow
due to the presence of prey particles in the feeding current
could be detected by a copepod (Yen and Strickler 1996;
Visser 2001; Takagi and Strickler 2020). Here, we study the
case in which such changes arise because rigid prey particles
cannot deform along with the deformations of the fluid (mea-
sured by shear or strain) in the complex flows of a beating cur-
rent. Free-floating, neutrally buoyant prey particles generate
this type of hydrodynamic disturbance without generating
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other hydrodynamic signals, such as from motility or gravita-
tional forces. Therefore, we numerically study the flows
around free-floating neutrally buoyant particles in feeding cur-
rents and their effect on the deformations of setae.

Our knowledge about whether free-floating prey entrained in
the feeding current can be detected is largely dependent on
microscopic observations; however, the findings of previously
reported experiments seem to contradict one another. First, it
remains unclear which setae serve as the primary mechanore-
ceptors to detect the presence of prey entrained in the feeding
current. The setae on the antennules, the primary focus in the
past studies, seem most sensitive to hydrodynamic disturbances
(Hartline et al. 1996; Fields et al. 2002) and motile prey are
detected closest to those setae (Jonsson and Tiselius 1990; Doall
et al. 2002). Nevertheless, most experiments conducted on free-
floating prey observed that prey are detected closest to the setae
on feeding appendages (Gonçalves and Kiørboe 2015). Second,
it is unclear whether copepods are capable of detecting hydrody-
namic disturbances induced by nearby prey, or instead the prey
must be in contact with the seta. As summarized in table 1 of
Gonçalves and Kiørboe (2015), a few studies reported that setae
of copepods with O 100� �

mm prosome length have long-range
sensitivity to O 10�2� �

mm diameter prey (Strickler 1982;
Bundy et al. 1998; Bundy and Vanderploeg 2002). However, a
majority of experiments report that prey detection occurs
when O 10�2� �

mm diameter prey are within a few prey radii
of the copepod’s mouthpart or tip of the feeding appendage
(Gonçalves and Kiørboe 2015).

One key consideration for the long-range sensing of hydrody-
namic signals is whether a copepod seta is able to distinguish the
prey-induced hydrodynamic signal from its own feeding current,
through a notable change in its deformation. The spatial distribu-
tions of the velocity of the background feeding current have been
quantified in many experimental measurements (Fields and
Yen 1993; Malkiel et al. 2003; Catton et al. 2007) and numerical
simulations (Jiang et al. 1999, 2002a,b), though not explicitly in
the physical space occupied by setae. However, only a few studies
(Bundy et al. 1998; Visser 2001; Yen and Okubo 2002) have
addressed how prey entrainment modifies the feeding current
and deformation pattern of the seta. This may be caused by tech-
nical difficulties in, first, measuring the small prey-induced hydro-
dynamic disturbance relative to the background feeding current,
and second, quantifying setal displacement in the feeding experi-
ment, as very small deformations of setae are capable of initiating
the predatory response. As a result, many researchers (Kiørboe
and Visser 1999; Visser 2001; Jiang and Strickler 2007) have
adopted simplified models which either treat the geometries of
both prey and copepods as spheres (Happel and Brenner 1983),
or which ignore the spatial extent of prey and copepods by rep-
resenting the flows as due to a small set of multipoles, pointlike
combinations of forces (Kim and Karrila 1991), which represent
the flow induced by both prey and copepods in the Stokes limit,
to quantify hydrodynamic disturbance sensed by the seta in feed-
ing experiments.

For setal detection, the multipole model may often be a
good representation of the flows caused by the entrained
prey, if the prey radius is much smaller than the reported
prey detection, hence allowing one to neglect the spatial
extent of the prey. However, the spherical and multipole
models are not adequate to describe the feeding current gen-
erated by the copepod for the following reasons. First, those
models are only valid in the regime where the Reynolds
number, which measures the relative importance of inertial
and viscous effects in a fluid, is nearly zero. The Reynolds
number is proportional to both the flow length scale and
velocity. At the copepod’s appendage and body length scales,
the Reynolds numbers are O 10�1� �

and O 100� �
, respectively

(Koehl and Strickler 1981; Jiang et al. 2002b; van Duren and
Videler 2003), outside the range of validity of those models.
Second, since it ignores the spatial extent of the copepod, the
multipole model only captures the characteristics of the feed-
ing current far away from the copepod body. However, the
prey detection happens at length scale smaller than the cope-
pod’s body length, where the spatial extent and the detailed
geometry of the copepod appears to be important (Jiang and
Paffenhöfer 2008; Shen et al. 2020). Last, the multipole model
does not link the fluid motion with setal deformation.
Recently, we (Shen et al. 2020) have addressed how the bend-
ing of setae modulates detection capabilities of copepods
using hydrodynamic signals approximated as oscillating sim-
ple shear flows, but it remains unknown how the deformation
patterns of setae in a feeding current are altered by the pres-
ence of nearby prey.

In this article, we focus on understanding the distance
at which free-floating prey can be detected by the
mechanoreceptional setae due to induced changes in the feed-
ing current. This article consists of two sections: first, we use
the immersed boundary (IB) method to numerically calculate
the flow across the setae on the antennules and other feeding
appendages with and without the prey entrainment. This is
the flow which bends the setae, and it is the change in this
flow due to the presence of prey which could possibly be
sensed hydromechanically by copepods. We explicitly take
into consideration of the beating strokes of the feeding
appendages, though we only account for the effect of setules
and setae on appendages by increasing their effective thick-
ness. Next, we utilize the method of regularized Stokeslets
(MRS) and inextensible Kirchhoff rod theory (KRT) to calculate
the setal deformations when subjected to the bending flows
obtained in the previous section. We determine how the prey-
induced hydrodynamic disturbances modify the deformation
patterns of the distal and proximal setae on the antennules,
and predict how close to the prey the setae on the antennules
must be in order to gain information about the disturbance
caused by the nearby prey, depending on the sensing mecha-
nism of the setae. Our findings are compared with previous
experiments to give insights into the possible range of the
prey detection distance.
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Bending flow across seta
Copepod model

The geometry of our copepod model is based on copepods
Paracalanus parvus and Pseudocalanus sp. in supplementary
videos 1 and 3 of Tiselius et al. (2013), and described in detail
in the “Detailed copepod model” section in the Supporting
Information. The prosome length of the modeled copepod is
assumed to be Lb ¼1 mm (Fig. 1). Such treatment is meant to
represent a typical calanoid copepod rather than any specific
species. The centerline of the longest appendage pair,
the antennules, is fitted to a 5th-order polynomial of arc
length LA1 ¼1:097 mm.

The feeding appendage geometries and beating patterns are
modeled as follows. Morphological examination shows that
five pairs of feeding appendages are attached to the copepod
cephalosome: antennae, mandibles, maxillipeds, first maxillae,
and second maxillae (Conway 2006). The second maxillae stay
almost stationary (Gill and Poulet 1986) and only move occa-
sionally to handle food particles upon detection (van Duren
and Videler 2003); therefore, we neglect the presence of the
second maxillae in our model. To model the other four pairs
of feeding appendages, we first determine the attachment
points of the roots from Tiselius et al. (2013). We then find

the projected motions of these appendages from supporting
video 1 of Tiselius et al. (2013). Last, we recover the three
dimensional beating patterns of these feeding appendages
according to the copepod schematics as shown in fig. 2 of
Koehl and Strickler (1981). Our obtained appendage motions
and copepod beating strokes are animated in Supporting
Information Videos S1 and S2a,b, respectively.

To generate a feeding current of comparable velocity to
experimental measurements, we make two assumptions. First,
the beating frequency of the feeding appendages, f, is set to be
30 Hz in our model, within the range of common copepods’
beating frequencies of 20–40 Hz (Koehl and Strickler 1981;
Yen and Strickler 1996; Svetlichny et al. 2020). Second, the
setules and setae on the feeding appendages are not explicitly
accounted for in the hydrodynamic model; instead, the root
diameters of all appendages are 1.5 times the values obtained
from the image analysis. We found that such treatment effec-
tively increases the contact area with surrounding fluid and
generates stronger power strokes (Koehl and Strickler 1981),
which produces a feeding current similar to that in experi-
ments (see the “Validation of numerical model” section of the
Supporting Information for details).

The positions of the anterior–posterior oriented setae on
the antennules are constructed based on fig. 1 of Yen and
Nicoll (1990). In our model, we consider the proximal seta on
the 3rd segment of the antennule and distal seta, as shown in
the lines in Fig. 1. To evaluate if the setae on the feeding
appendages are sensitive to the hydrodynamic signal, we also
place setae at the tips of the endopods of the antennae and
maxillipeds, pointing in the direction of the appendage cen-
terline (see Fig. 1). Similar to our previous approach (Shen
et al. 2020), we assume all setae are cylindrical-shaped with
length Lseta ¼200 μm, radius rseta ¼1 μm. Results are obtained
for Young’s modulus of E¼107 N m�2 based on Yen and
Okubo (2002), unless specified otherwise.

Feeding-current feeding copepods were tethered by forceps
or hair for ease of microscopic observations in early experi-
ments (Paffenhöfer and Lewis 1990; Vanderploeg et al. 1990;
Yen and Strickler 1996) that quantified their behavior. In
order to have a meaningful comparison with these experi-
ments, we therefore assume the body of the copepod is teth-
ered and stationary.

Prey model
We consider a passive rigid spherical prey of the same den-

sity as the surrounding fluid. In a uniform flow, a sphere sim-
ply translates with the flow without altering it. Therefore, we
expect that the free-floating prey would not generate a distur-
bance in a quiescent fluid or uniform flow. However, in a spatially
nonuniform background flow, the finite extent of the sphere
alters the flow and could be detected by the mechanoreceptional
setae of copepods.

In selecting the prey size, we note that the food particles
widely used in the experiments of copepod feeding on inert
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Fig. 1. (a) Ventral-dorsal and (b) lateral views of the feeding-current
feeding copepod model and three starting prey positions. The cephalic
appendages from left to right are the antennule, antenna, mandible, first
maxilla and maxilliped. Setae (all of length 200 μm) on the proximal and
distal of the antennule, the endopod of the antenna and the maxilliped,
are indicated by straight lines. Prey positions B and C are centered in front
of the left distal and proximal antennule setae, respectively, and A is on
the sagittal plane.
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stimuli are nonmotile algae and inert beads of diameter
d varying from O 100� �

to O 102� �
μm (Vanderploeg et al. 1990;

Broglio et al. 2001; Jiang and Paffenhöfer 2008). In our model,
we choose the upper limit, d =100 μm and assess if the cope-
pod setae are equipped with long-ranged hydrodynamic sensi-
tivity to this prey type. Since the flow disturbance arises from
the spatial extent of the sphere interacting with nonuniform
flow, we expect smaller food to cause even less disturbance,
hence be harder for copepods to detect.

IB method
The hydrodynamics are governed by the unsteady and

incompressible Navier–Stokes equations, which we solve
numerically by the IB method (Peskin 1972, 2002). We adopt
the constraint IB version of IBAMR (Bhalla et al. 2013) to solve
for and compare the feeding current across the setae with and
without presence of the prey. The setup and validation of
the numerics are briefly mentioned here but described in
details in the “Immersed boundary method” section of the
Supporting Information.

We tether the copepod at the center of the computational
domain and prescribe the beating strokes of the feeding
appendages. Free-floating prey are treated as (net) force- and
torque-free particles in IB simulations, allowing them to drift
in the feeding current. The fluid is at rest at t = 0, and acceler-
ates due to the constraints provided by the no-slip boundary
conditions specified by the copepod and prey geometry and
motion. Similar to the approximations made in the arthropod
filiform hair model (Humphrey et al. 1993) and our previous
approach (Shen et al. 2020), we assume that the setae are far
from each other and have negligible disturbance to the feed-
ing current, and hence we do not explicitly include setae fila-
ments as part of the immersed copepod. The flow profile
obtained from the numerical model is validated by comparing
the time-averaged steady-state flow with that measured experi-
mentally in Fields and Yen (1997).

Bending flow across feeding appendage setae
Here, we evaluate how the bending flows across the setae

on the feeding appendages and the antennules are affected by
free-floating prey. We find that there is little difference in flow
with and without free-floating prey at setal locations on feed-
ing appendages.

In our numerics, we first let the copepod’s feeding append-
ages beat for 60 cycles so that the bending flows across all
setae are within 2% of their corresponding steady state values
(see the “Steady state test” section in the Supporting Informa-
tion). We then center a free-floating prey at Point A and reset
the time to be t = 0. Point A (Fig. 1) is on the sagittal plane of
the copepod approximately 0.5 mm in front of the feeding
appendages. Since the prey is force- and moment-free, it is
entrained in the feeding current and moves toward the feed-
ing appendages over time, as shown by the prey trajectory in
Fig. 2a. In Fig. 2b,c, we plot the distance, D, from the prey

center to the setae on the maxilliped and the endopod of the
antenna as a function of time, respectively.

To analyze the prey-induced disturbance sensed by the
setae, we evaluate the velocities of the bending flows along
the setal axis relative to their corresponding setal root veloci-
ties, Δu s, tð Þ¼u s, tð Þ�u 0, tð Þ, where s� 0,Lseta½ � is a Lagrangian
parameter along the centerline of the seta, with s =0 at the
setal root. In Fig. 2d,e, we plot the x, y, and z components of
the instantaneous bending flows across the setae on the max-
illiped and the endopod of the antenna with and without a
free-floating prey when their corresponding distances to the
prey are the shortest. The shortest distance from the prey cen-
ter to the seta on the endopod of the antenna is 0.265mm
(equivalent to 5.3 prey radii), occurring at time t=T ¼25:44
(refer to Fig. 2c), and the shortest distance from the prey to
the seta on the maxilliped is even smaller (0.163mm, equiva-
lent to 3.3 prey radii), occurring at time t=T ¼21:91 (refer to
Fig. 2b). We find that the presence of the prey induces negligi-
ble difference in the sensed flow across these seta (note that
the dashed lines coincide with the solid lines in Fig. 2d,e). The
limited change in flow across the setae on feeding appendages
is consistent with the conclusion reached by Gonçalves and
Kiørboe (2015), which implies that feeding appendage setae
may not be designed for prey detection through hydrome-
chanical reception, as opposed to direct contact. As might be
expected, we found that free-floating prey starting farther
from the feeding appendages produce even less difference in
flow across these setae (data not shown). Therefore, in the
remainder of this paper, we focus on the setae on the anten-
nule instead.

Bending flow across the setae on the antennule
Without the presence of the prey

First, we evaluate the feeding current flow without prey
across the setae on the antennule. The flow velocities at the
roots of these setae should be zero due tethered boundary con-
dition applied on the copepod. However, a known drawback
of the constraint IB method is that the boundary conditions
are satisfied only approximately, leading to a mild penetration
of the flow through the copepod body (Kallemov et al. 2016).

To resolve this issue, we adjust the positions of the setae on
the antennule in the x direction (Fig. 1) so that the setal root
is about one computational grid into the antennule object,
where the calculated feeding current is the smallest. At these
root locations, the feeding current is 5.7% (13.8%) of the max-
imum magnitude of the flow across the corresponding distal
(proximal) seta on the antennule. To correct for this residual
flow we use the quantity Δu s, tð Þ¼u s, tð Þ�u 0, tð Þ to evaluate
the velocities of the bending flows along the centerline s of
the distal and proximal setae on the antennule.

The steady-state bending flow across these setae is highly
oscillatory (refer to Supporting Information Fig. S6 for the plot
of the steady-state Δu s, tð Þ across the distal and proximal setae
at selected times over one beating cycle). This is characteristic
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of all the feeding current flows we examine, since they are
generated by oscillatory movement of the feeding appendages.
Therefore, in what follows we quantify the bending flow by
decomposing it into time-averaged and oscillatory compo-
nents during the Nth beating stroke ( N�1ð ÞT ≤ t <NT),

Δu s, tð Þ¼Δuavg s,NTð ÞþΔuosc s, tð Þ ð1Þ

where Δuavg ¼ 1=Tð ÞÐ NT

N�1ð ÞTΔudt is the time-averaged velocity at
centerline position s over one oscillation cycle, and Δuosc repre-

sents the oscillatory velocity component of the bending flow.

Free-floating prey near the distal seta
In this section, we show that free-floating prey hardly affect

the feeding current at the distal setal locations unless they are
quite close (less than 10 prey radii) to the antennules. After
the flow reaches steady state, we reset the time to be t = 0 and
start a free-floating at Point B (Fig. 1), in front of the distal of
the left antennule and 0.5 mm from its centerline. Near the
antennule, the hydrodynamic interaction between the anten-
nules and the free-floating prey can be seen to alter the prey
trajectory (Fig. 3a–c). We show the time-averaged bending
flows, Δuavg, across the left distal seta at five typical beating
cycles with and without the free-floating prey in Fig. 3d–h.
From these results, we make the following observations.

First, in the 1st beating cycle (0 ≤ t=T <1), when the free-
floating prey is 0.5mm (10 prey radii) from the centerline of
the antennule (Fig. 3a,b), we did not observe any difference in
the average flow across the distal seta Δuavg due to the pres-
ence of the free-floating prey (note the solid and dashed lines
coincide in Fig. 3d).

Second, in the 61st beating cycle, when the prey appears to be
closest to the distal setal tip (0.160 mm away, equivalent to 3.2
prey radii from setal tip and 5.5 prey radii from the centerline of
the antennule; Fig. 3a,b), we only observe a small change in the
y component of Δuavg (compare the solid and dashed lines in
the middle panel of Fig. 3e). This is due to the fact that our
hydrodynamic model neglects the presence of the distal seta
and its hydrodynamic interaction with the prey; the change
in Δuavg across the distal seta is induced by the relatively weak
hydrodynamic interaction of the prey and the antennule.

Third, in the 91st beating cycle, when the prey is 0.171 mm
(3.4 prey radii) from the centerline of the antennule (Fig. 3a,b),
we observe the largest difference in Δuavg across the distal seta
(compare the solid and dashed lines in Fig. 3f). In comparison,
the free-floating prey initiated at Point A does not induce a
noticeable change in the bending flow across the setae on
feeding appendages when the distance from the prey to the
maxilliped is about the same as the case here (3.4 prey radii).
This demonstrates that the distal seta on the antennule has a
higher hydrodynamic sensitivity than feeding appendage
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the prey, respectively. Note that the dashed and solid lines show noticeable difference only in the middle panel in (e).
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setae, aided by the small magnitude of the feeding current
across the distal seta, which creates a quiet hydrodynamic
sensing environment.

Fourth, in the 112th beating cycle, when the prey is closest
to the centerline of the antennule (0.138 mm away, equiva-
lent to 2.8 prey radii, Fig. 3a,b), we find that the time-averaged
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prey-induced disturbance is smaller than that at the 91th beat-
ing cycle (compare the differences of the solid and dashed
lines in Fig. 3f,g). Thus, there is no guarantee that the largest
difference in bending flow occurs when the prey is closest to
the centerline of the antennule.

Finally, in the last (140th) cycle of our simulation, when the
prey is 0.183 mm (equivalent to 3.6 prey radii) from the center-
line of the antennule, we do not observe any difference in the
time-averaged bending flow with and without the prey (Fig. 3h).

Next, we examine the oscillatory portion of the flow, Δuosc

across the distal seta. In Supporting Information Fig. S7a, we
plot Δuosc across the distal seta with and without the presence
of the prey during the 91st cycle (when the difference in
Delta;uavg is the largest). In general, the oscillatory velocity
component has the same order of magnitude as the time-aver-
aged one (compare the horizontal scales of Fig. 3f with
Fig. S7a). This oscillatory flow velocity has not been revealed
by the previous numerical models (Bundy et al. 1998; Jiang
et al. 1999, 2002a) that either treat the hydrodynamic effect
of the beating appendages as due to constant point forces, or
assume the copepod swims at a constant speed, hence only
capturing the time-averaged feeding current over a cycle of
beating stroke. It is often argued that by analogy with the flow
over an infinite oscillatory plate, oscillatory flows caused by
the appendages should decay over a length scale set by viscous
diffusion, Ld ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ= πρfð Þp

, which for appendage oscillations of
frequency f =30Hz is Ld ≈103 μm (Jiang et al. 2002b).
According to this argument, the oscillatory flow should have
mostly decayed at the distance of the setae on the antennules. Inter-
estingly, our full flow solution shows that the flow does not decay
as much as expected, and that appreciable oscillatory component
of the feeding current can be observed around the distal seta, more
than 1mm from the feeding appendages. Comparing velocities of
bending flows across the distal seta with and without prey, we find
that the oscillatory flow is nearly the same at all eight selected time
frames over a cycle, so it is not much affected by the presence of
prey. Since the presence of prey largely only affects the time aver-
aged flows around the setae on the antennules, in the remainder of
the paper we focus on the time-averaged feeding current, Δuavg,
rather than the oscillatory flows.

To summarize, the hydrodynamic disturbance induced by
free-floating prey at the distal seta induces small changes in
the time-averaged background feeding current, with a notable
change in the bending flow occurring when the prey is less
than 5.5 prey radii away from the antennule. Note also that
although the change in bending flow due to the prey-induced
hydrodynamic distance is small in this example, the prey
requires about 110 cycles (≈ 3.3 s) to travel across the anten-
nule, which gives the distal seta a relatively long time to sense
its presence.

Free-floating prey near the proximal seta
Now, after the flow reaches steady state, we reset the time

to be t = 0 and start a free-floating prey at Point C (Fig. 1) in

front of the proximal of the left antennule and 0.5 mm
from its centerline. The prey trajectory relative to the center-
line of the antennule and proximal (distal) seta is shown in
Figs. 4a,b, 5a,b. Figure 4c plots the distance from prey center
to the centerline of the antennule over time. The prey-
induced hydrodynamic disturbance is expected to be stronger
due to stronger flows and spatial variation in flows near the
proximal compared to near the distal of the antennule. In this
case, in addition to the proximal seta, the distal seta has a
chance to sense the prey-induced flow disturbance, even
though Point C is farther from the distal seta than Point
B. Therefore, we consider the bending flows across both setae.

Similar to the case with prey near the distal of the anten-
nule, we observe that the oscillatory portion of the flow across
the proximal seta is hardly altered by the presence of the prey
(Supporting Information Fig. S7b). Consequently, we show
the x, y, and z components of the time-averaged bending
flows, Δuavg, across the proximal and distal setae at four typi-
cal beating cycles in Figs. 4d–g, 5c–f, respectively, and make
the following observations.

First, during the 1st cycle, when the prey just departs from
Point C (Figs. 4a,b, 5a,b), we find no difference in the bending
flows across the proximal and distal setae with and without
the presence of prey (note that the solid and dashed lines coin-
cide in both Figs. 4d and 5c). This demonstrates that although
the prey-induced disturbance near the proximal is larger than
that near the distal of the antennule, both the proximal and
distal setae are not capable of sensing free-floating prey when
it is 10 prey radii away from the antennule.

Second, during the 17th cycle, when the prey is closest to the
centerline of the antennule (0.153 mm away, equivalent to 3.1
prey radii; Fig. 4a,b, 5a,b), we observe some difference in Δuavg

across the proximal seta with and without the presence of the
prey (compare the solid and dashed lines in Fig. 4e) but did
not find any noticeable difference for the distal seta (Fig. 5d).

Third, the largest difference in the sensed flow across the prox-
imal (distal) seta occurs at the 19th (23rd) beating cycle, in which
the distance from the prey to the centerline of the antennule is
about 0.189 mm (0.395 mm), equivalent to 3.8 prey radii (7.9
prey radii). Compare the solid and dashed lines in Figs. 4f, 5e.
This again shows that being closest to the antennule does not
guarantee the largest difference in the bendingflow. Both the sec-
ond and third observations suggest that there may be a few beat-
ing cycles of delay between for the distal seta to receive prey
information compared to the proximal seta.

Finally, in the last (30th) cycle of our simulation, when the
prey is 0.567 mm (equivalent to 11.3 prey radii) from the cen-
terline of the antennule, we do not observe any difference in
the time-averaged bending flow with and without the prey
(note the solid and dashed lines coincide in Figs. 4g, 5f).

To summarize, we see that the prey entrained at the proxi-
mal region of the antennule generates a larger flow distur-
bance and is relatively easily sensed by the setae on the
antennule when the prey is about three prey radii from the
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centerline of the antennule. This example demonstrates that
prey can sometimes induce differences in the bending flows
on multiple setae. Therefore, if the prey-induced hydrody-
namic disturbance causes the neurons on more than one seta
to fire, the prey detection may involve the coordination of the
setal array on the antennule, in agreement with previous
hypotheses (Yen and Nicoll 1990; Fields 2014). Last, we note
that although the change in bending flow could be signifi-
cant, the prey only requires 19 cycles (≈ 0.6 s) to move across
the antennule, giving the proximal seta a relatively short time
to sense its presence.

Deformation of seta
In this section, we analyze the change in the setal deformation

due to the hydrodynamic disturbance induced by prey to evaluate
if the setae are sensitive to their presence. To relate the hydrody-
namic signal received by the setae on the antennule with their
neurological responses, we solve for the deformation of the seta
when subjected to the bendingflows described in the previous sec-
tion. In previous work investigating the deformation of seta due to
background shear flows, we solved for the time-dependent setal
shape by assuming small two-dimensional setal deformations, and
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balancing elastic forces obtained from Euler beam theory against
the hydrodynamic forces obtained from resistive force theory
(Shen et al. 2020). In this paper, we must move beyond the Euler
beam description of elastic forces, since the setal deformation is
not necessarily small, and the flow and bending are inherently
three-dimensional. Therefore, we apply themore general KRT and
MRS to solve for large scale setal deformations in three-
dimensional feeding currentflows.

Method
The method to solve for the setal deformation is as follows. We

consider a seta which is straight at time t = 0 and deforms when

subjected to the feeding current obtained in the “Bending flow
across the setae on the antennule” section. At each cross section of
the seta specified by centerline position s, we define a set of ortho-
normal basis vectors d1 s, tð Þ,d2 s, tð Þ,d3 s, tð Þ½ � to express the ori-
entation of the filament cross section, where the unit
tangential vector d3 ¼ ∂sX= ∂sXj j, while d1 and d2 are material
unit vectors spanning the cross section. As a thin filament,
the internal force and torque F s, tð Þ and N s, tð Þ, arising from
the setal deformation are governed by KRT (Lim et al. 2008;
Olson et al. 2013; Jabbarzadeh and Fu 2018), given by

∂sFþf ¼0 ð2Þ
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∂sNþd3�Fþn¼0 ð3Þ

where f s, tð Þ and n s, tð Þ are the hydrodynamic force and torque
distribution exerted by fluid along the setal centerline s,

respectively. As the setal deformation is dominated by bending

rather than stretching (Fields et al. 2002), we utilize the inextensible

version of the KRT (Jabbarzadeh and Fu 2020) which implies that

∂sXj j ¼ 1, and Ni ¼N �di i¼ 1,2,3ð Þ can be expressed as

N1 ¼EI ∂sd2ð Þ �d3 ð4Þ
N2 ¼EI ∂sd3ð Þ �d1 ð5Þ
N3 ¼GJ ∂sd1ð Þ �d2 ð6Þ

where I¼ πrseta4=4 and J¼ πrseta4=2 are the planar and polar sec-

ond moment of seta, respectively. The seta is treated as isotropic

with Poisson’s ratio υ¼ 0:3 (Yen and Okubo 2002),

hence G¼E= 2 1þυð Þ½ �.
Due to the small length and velocity scales of the flow past

seta (rseta ¼1 μm and u s, tð Þj j<O 100� �
mms�1), the Reynolds

number is small enough that fluid motion is governed by the
Stokes equations:

�rpþμr2uþfb ¼0 ð7Þ

r �u¼0 ð8Þ

Here, we couple Eqs. 2 and 3 with Eqs. 7 and 8, and apply the
boundary conditions that the seta is fixed and clamped at its
root (∂tXjs¼0 ¼ ∂sXjs¼0 ¼ 0) and force- and moment-free at the
other end (F s¼Lseta

j ¼N s¼Lseta
j ¼ 0). Our numerical scheme imple-

ments the MRS (Cortez 2001; Cortez et al. 2005) to find the
hydrodynamic forces on the seta, and then solves Eqs. 2 and 3
for the deformed shape of the seta. Details of our numerical
scheme to implement the MRS (Hyon et al. 2012; Martindale
et al. 2016) and KRT (Jabbarzadeh and Fu 2020) and conver-
gence test results are shown in the “Numerical scheme for
setal deformation” section of the Supporting Information, but
briefly, we uniformly place a total number of N regularized
Stokeslets on the surface of the seta with physical coordinates
Xn n¼ 1,2, ,Nð Þ. For each seta, the setal velocity v s,tð Þ at X s, tð Þ
can be evaluated by using

v s, tð Þ¼ ∂tX¼Δu s, tð Þþ
XN
n¼1

S X,Xn,εð ÞFn tð Þ ð9Þ

where Δu s, tð Þ is the bending flow (obtained in the “Bending
flow across the setae on the antennule” section) prescribed at
position s and time t without the presence of the seta, and F n tð Þ
are the components of the strength of the regularized Stokeslet at

position Xn and time t; the regularized Stokeslet kernel S is defined

in Supporting Information Eq. S6.

Setae are more sensitive to time-averaged feeding current
Here, we solve for the shape of the setal centerline, X s, tð Þ, for

the distal seta when placed in the time-dependent bending flows.
Weuse themagnitude of the setal tip displacement, defined as

ℓ tð Þ¼ X Lseta, tð Þj j ð10Þ

and the magnitude of the setal root curvature, defined as

κ tð Þ¼ ∂2X s, tð Þ
∂s2

�����
s¼0

�����
����� ð11Þ

to relate the hydromechanical signal received by the seta
(bending flow)with its neurophysiological response (electric poten-
tials). The tip displacement has been often used in the previous
experiments to estimate the angular displacement of seta (Yen
et al. 1992; Fields et al. 2002). The root curvature has been hypothe-
sized to be positively correlatedwith the chance of sensing environ-
mental signals, as discussed in Shen et al. (2020). In short, root
curvature is associated with shear displacement of the cuticle rela-
tive to the microtubule-filled dendrites extending along the anten-
nule and anchored to the inner wall of its cuticle at the setal root
(fig. 5 of Shen et al. 2020), opening the mechano-gated micro-
channels perforating the dendritic membrane and leading to the
transduction ofmechanical signal intoneurophysiological signal.

To determine the effect of the bending flow on the
mechanical response of the seta, we first consider the deforma-
tion pattern, tip displacement, and root curvature of the distal
seta when subjected to the bending flow in the absence of
prey (described in Supporting Information Fig. S6a). In Fig. 6a,
b, we plot the distal setal shape at four selected time frames
within a beating cycle, after the time-averaged setal shape
reaches steady state. We find that although the magnitude of
the oscillatory bending flow component ( Δuoscj j) across the
distal seta is of the same order as that of the time-averaged
bending flow component ( Δuavg

�� ��), the seta seems to respond
much more strongly to the time-averaged component, bend-
ing toward a fixed direction while having a relatively small
amplitude of oscillation.

To quantify the setal deformation, we plot magnitudes of
the tip displacement (ℓ) and root curvature (κ) of the distal
seta over 15 beating cycles in Fig. 6c,d. We characterize ℓ
and κ at the Nth beating cycle by using their corresponding
time-averaged responses over one beating cycle of period T,
denoted by

ℓavg ¼ 1
T

ðNT

N�1ð ÞT
ℓdt ð12Þ

and

κavg ¼ 1
T

ðNT

N�1ð ÞT
κdt ð13Þ
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and peak-to-peak amplitudes, denoted by ℓpp and κpp (see
Fig. 6c,d). The time-averaged setal responses, ℓavg and κavg, are

caused by the time-averaged bending flow component Δuavg, while
the fluctuations around the average are induced by the oscillatory

bending flow component Δuosc. When the response of the distal

seta reaches steady state, we find from Fig. 6c,d that ℓavg is 2.86

times larger than ℓpp, and that κavg is 1.45 times larger than κpp, in

accord with the qualitative observation in the previous paragraph

that the seta responds mostly to the time-averaged flow. This result

is also consistent with our previous work (Shen et al. 2020), which

explains why the bending response of setae behaves as a low-pass

filter to flow velocity signals.

Ourfindings here have two implications on the prey detection
of the feeding-current feeding copepods. First, at the most com-
mon range of beating frequencies (20 Hz≤ f ≤40 Hz), the effect
of the oscillatory flow component on the hydrodynamic sens-
ing is small. As the free-floating prey does not cause notable
changes in the oscillatory flow components (see Supporting
Information Fig. S7), the bending mechanism of the setae fil-
ters out less important hydrodynamic signals. Second, the
time-averaged flow component is most important for prey
detection. The presence of nearby prey does cause notable
changes to the time-averaged flow across the setae (see Figs. 3f,
4f, 5e). The setal bending response, being a low-pass velocity
filter (Shen et al. 2020), preserves the magnitude of this time-
averaged signal and increases the chance of prey detection.

Setal deformation due to free-floating prey
Free-floating prey near the distal seta

We further examine how the proximal and distal setae
respond to free-floating prey of diameter 100 μm. We first con-
sider the case in which the prey approaches the distal seta from
point B along the trajectory shown in Fig. 3a,b. Our results for
setal bending are presented in terms of three different prey detec-
tion criteria. The exact type of bending signal which leads to
copepod response remains unknown, and the different prey
detection criteria correspond to different possibilities.

The first criterion supposes that prey detection of copepods
is related to the absolute change in the tip displacement or
root curvature of the seta due to the presence of the prey,
Δℓavg
�� �� or Δκavg

�� ��, respectively defined as

Δℓavg
�� ��¼ ℓavg NTð Þ�ℓ 0ð Þ�� �� ð14Þ

and

Δκavg
�� ��¼ κavg NTð Þ�κ 0ð Þ�� �� ð15Þ

The former has been widely used to relate the strength of
external stimulus with setal deformation (Yen et al. 1992;
Fields et al. 2002), while the latter has been proposed by us to
be directly related to the physiological response of the cope-
pods (Shen et al. 2020).

The second criterion supposes that the copepod seta adapts in
sensitivity to the average level of background signal caused by
the feeding current. The seta only responds to the relative change
in deformationwith respect to the background, expressed as

R1,disp ¼
Δℓavg
�� ��
ℓavg,w=o

ð16Þ
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and

R1,curv ¼
Δκavg
�� ��
κavg,w=o

ð17Þ

if the tip displacement and root curvature are used, respec-
tively, where ℓavg,w=o (κavg,w=o) represents the magnitude of the
time-averaged tip displacement (root curvature) without the
presence of the prey. Larger R1,disp and R1,curv are more likely
to lead to prey detection.

The third criterion supposes that prey detection happens
only when the change in hydrodynamic signal induced by
the prey can be distinguished from the time-dependent fluctu-
ations in signal due to the feeding current. We define this prey
detection criterion in terms of the setal tip displacement
ratio as

R2,disp ¼
Δℓavg
�� ��
ℓpp,w=o

ð18Þ

and in terms of the root curvature ratio as

R2,curv ¼
Δκavg
�� ��
κpp,w=o

ð19Þ

where ℓpp,w=o and κpp,w=o are the peak-to-peak amplitudes of
the tip displacement and root curvature without the prey,
respectively. It seems likely that copepods would not gain an
advantage by responding to these predictable fluctuations, so
we hypothesize that the copepod seta is more likely to sense
the presence of the prey for R2,disp >1 or R2,curv >1.

In Fig. 7a,b, we show the magnitude of the average tip displace-
ment (ℓavg) and root curvature (κavg), respectively, as well as verti-
cal bars representing their peak-to-peak ranges (ℓpp or κpp),
along with the distance from the prey center to the centerline of
the antennule over the prey trajectory. Only results for the distal
seta are presented, as the small hydrodynamic disturbance
induced by the free-floating prey does not cause any notable
change in the deformation pattern of the proximal seta.

We use the three aforementioned prey detection criteria to
evaluate the hydrodynamic sensitivity of the distal seta. First,
the detection of free-floating prey through absolute changes
in the tip displacement or root curvature of the setae is feasi-
ble but highly unlikely. We find that the maximum changes
in ℓavg and κavg are 0.32nm and 1.2 m�1, respectively.
According to past experiments performed on copepods, the
threshold displacement to trigger setal response is at least
10 nm (Yen et al. 1992). Second, hydromechanical detection
relative to average bending through R1,disp or R1,curv is feasi-
ble. The maximum R1,disp and R1,curv are 5.3% and 5.2%,
respectively, which may give the copepod some information
about the presence of prey. Last, detection relative to oscilla-
tory background bending through R2,disp and R2,curv is

unlikely; the peak-to-peak amplitudes of the tip displacement
and root curvature without the prey are much larger than the
changes in the corresponding time-averaged quantities.

Free-floating prey near the proximal seta
We next consider the case in which the prey approaches

the proximal seta on the antennule from Point C along the
trajectory shown in Fig. 4a,b. We expect that the stronger
prey-induced disturbance in Figs. 4, 5 may cause more
changes in the deformation of each seta. In Fig. 8, we show
the magnitude of the average tip displacement (ℓavg) and root
curvature (κavg), for both the distal and proximal setae, as well
as vertical bars representing their peak-to-peak ranges (ℓpp or
κpp), along with the distance from the prey center to the cen-
terline of the antennule over the prey trajectory.

The tip displacement and root curvature of both setae fol-
low similar trends. First, in the first beating cycle, we find that
the prey, at Point C and 0.50 mm to the antennule, does not
cause any notable changes in ℓavg and κavg of the setae. This is
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due to the fact that even in the strong flow near the proximal
of the antennule, the hydrodynamic disturbance induced by
free-floating prey is too weak to be sensed by the nearest seta
10 prey radii away. Second, we note that the changes in tip
displacement and root curvature induced by the entrained
prey are not necessarily larger as the prey moves closer to the
antennule. When approaching the proximal (distal) seta, the
prey alters the surrounding current and reduces the deforma-
tion amplitude of distal (proximal) seta around the 15th (21st)
beating cycle. Last, the maximum responses of the copepod
setae may not occur at the shortest distance to the prey. This
can be easily seen from the distal seta, for which the maxi-
mum changes in deformation occur at the 24th cycle, when
the prey has traveled past the centerline of the antennule.

We again use the three prey detection criteria (Eqs. 14–19)
to assess whether free-floating prey near the proximal of the
antennule can be detected. For the distal seta, we find that
maximum changes in ℓavg and κavg are very similar to those
for prey near the distal of the antennule (compare Fig. 8c with
Fig. 7a, and Fig. 8d with Fig. 7b). Therefore, we reach the same
conclusions: prey detection through changes in setal deforma-
tion relative to average background bending is feasible, while
detection through absolute changes in setal deformation and

relative to oscillatory background bending is unlikely. For the
proximal seta, we find that the maximum change in ℓavg and
κavg are significantly larger, while the maximum R1,disp and
R1,curv are both around 5%. Thus, the detection of absolute
changes in setal deformation and relative to average back-
ground bending is possible, while detection through changes
in setal deformation relative to oscillatory background bend-
ing remains unlikely.

Discussion
In this study, we have developed a numerical model that

evaluates how the setae of a feeding-current feeding copepod
respond to the hydrodynamic disturbance induced by the
prey entrainment. We used the IB method to compute the
feeding current induced by a tethered copepod by prescribing
the beating strokes of its feeding appendages. We determined
the changes in bending flows across the setae caused by free-
floating prey. We found that the time-averaged component of
the prey-induced flow disturbance is more relevant to the
hydromechanical reception of copepods. The setae at the feed-
ing appendage region suffer from the strongest background
feeding current, and have the least relative change in bending
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flow induced by nearby prey. On the other hand, the distal
seta on the antennule is subjected to the least background cur-
rent, and is most sensitive to small changes in the prey-
induced bending flow.

We used a relatively large prey size (100 μm diameter) since
smaller prey required finer numerical meshes and were not
computationally feasible. However, our results can be used to
gain insights into the sensed current caused by smaller free-
floating prey in reality. In this study, 100-μm diameter free-
floating prey do not cause any notable change in the bending
flow across the setae on the antennule until the distance from
the prey to the centerline of the antennule is less than five
prey radii from the antennule. To estimate the prey detection
distance for a prey of smaller radius (d/2), we follow the
approach of Visser (2001) to express the hydrodynamic distur-
bance of a neutrally buoyant prey as _ε d=2ð Þ3=r2, at a distance
r from the prey in a background flow characterized by strain
rate _ε. Assuming the same strain rate and the same disturbance
magnitude needed for detection, this implies that detection
distance scales as d=2ð Þ3=2. This suggests that if the setae on
the antennule are capable of detecting free-floating prey, the
prey of 5, 10, and 25 μm in radius will be detected within 1.6,
2.2, and 3.5 prey radii from the antennule, respectively.

We have evaluated the changes in deformation patterns of
the setae on the antennule relative to those due to the back-
ground current, by coupling the MRS and inextensible KRT.
We find that the copepod setae, as low-pass velocity filters, are
most sensitive to the time-averaged flow component of the
feeding current. We proposed three prey detection criteria
based on the changes in either tip displacement or root curva-
ture to determine the copepod’s prey detection capability.
First, if characterized as an absolute change sensor, the cope-
pod seta nearest to the prey is responsible for the prey detec-
tion. The small change in the deformation of the distal seta
indicates that this detection mechanism is unlikely for the dis-
tal seta. Second, if characterized as a relative change sensor,
the distal seta may be equipped with a long-ranged hydrody-
namic sensitivity that assists the detection of the free-floating
prey at the proximal region of the antennule. Third, if prey
detection requires the prey-induced signal to be completely
distinguished from the background fluctuations, both setae on
the antennule have very short-range hydrodynamic sensitivity
that requires the prey to touch or nearly touch the seta before
being sensed.

Our three prey detection criteria imply different sensory
mechanisms of the setae. Our results suggest that the mecha-
nism of signal transduction can be better understood through
experiments that distinguish these criteria, which would ulti-
mately shed light on how copepods sense their surroundings
in the presence of not only self-generated noise such as the
feeding current, but also environmental noise. For example,
our results suggest that the proximal and distal setae have dif-
ferent amounts of changes in absolute magnitude compared
to relative magnitude of bending and curvature. Both absolute

and relative deflections of setae could be measured experimen-
tally while observing triggering of physiological and behav-
ioral responses of copepods, to see which is more important
for sensing. If relative signals are more correlated with
response, this implies that the distal setae are likely to be more
important for sensing, even for particles that are closer to
proximal setae. Interestingly, if R2,disp or R2,curv need not be
greater than 1 for physiological and behavioral responses to
be triggered, this implies that the triggering mechanism is
somehow able to filter out the oscillatory signal of feeding cur-
rent, which could be an important adaptation to allow sensing
in the presence of noise.

We can also use the three prey detection criteria to assess
the distance dependence of detection of free-floating prey. We
find that free-floating prey generate minimal flow disturbances
and are relatively hydrodynamically inconspicuous to cope-
pods. They do not induce any changes in the responses of
the distal and proximal seta unless they are less than 10 and
5.5 prey radii away from the antennule, respectively. The
short-ranged sensitivity of the setae on the antennule to free-
floating prey may explain why most copepod feeding experi-
ments using free-floating prey report that prey are missed by
the setae and are detected upon reaching the vicinity of the
feeding appendages (Gonçalves and Kiørboe 2015).

Finally, we point out the limitations of our current model
and provide suggestions for future work. First, the copepod in
our model is tethered in space, which only happens in labora-
tory setups. The prescribed swimming strokes of the feeding
appendages do not guarantee that the force- and moment-free
conditions are satisfied automatically for a free-swimming and
gravity-tethered copepods in nature, which might be investi-
gated in further work. Second, the adopted IB method relies
on the fractional-step approach, in which the no-slip bound-
ary condition is satisfied approximately and leads to a penetra-
tion of the flow into the copepod body and appendages. At
zero to intermediate Reynolds number region, the prescribed
boundary conditions could instead be satisfied exactly by
using a direct forcing and unsplit method such as in Kallemov
et al. (2016) and Usabiaga et al. (2017). Third, the setal defor-
mation is solved in two steps, neglecting the presence of the
setae filaments while determining the bending flows, then
solving for setal deformation in the determined bending flow.
Thus, the accuracy of the setal deformation can be improved
by incorporating its hydrodynamic effect on the flow through
a finite element treatment and directly finding its deformation
in the IB method. Last, we have focused on the sensing of
hydrodynamic disturbances caused by the mismatch between
the rigid body motion of a prey particle and the deformational
flows of feeding currents. Another possible mechanism of
sensing may be the phase mismatch of non-neutrally buoyant
particles with the oscillatory feeding current (Giuffre
et al. 2019). In that case, additional hydrodynamic signals aris-
ing from the net force exerted on the fluid by the weight of
the particle are unavoidable and could also be sensed by the
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copepod. Likewise, motile prey could be sensed not only
through the disturbance to feeding current studied here, but
also by sensing the flows caused by their motility. Detection
of such particles that produce multiple hydrodynamic signals
is worthy of future investigation.
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