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Large deformations of the hook affect free-swimming singly flagellated bacteria during flick motility
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Hook dynamics are important in the motility of singly flagellated bacteria during flick motility. Although the
hook is relatively short, during reorientation events it may undergo large deformations, leading to nonlinear be-
havior. Here, we explore when these nonlinear and large deformations are important for the swimming dynamics
in different ranges of hook flexibilities and flagellar motor torques. For this purpose, we investigate progressively
more faithful models for the hook, starting with linear springs, then models that incorporate nonlinearities due
to larger hook deformations. We also employ these models both with and without hydrodynamic interactions
between the flagellum and cell body to test the importance of those hydrodynamic interactions. We show that
for stiff hooks, bacteria swim with a flagellum rotating on-axis in orbits and hydrodynamic interactions between
the cell body and flagellum change swimming speeds by about 40%. As the hook stiffness decreases, there is
a critical hook stiffness that predicts the initiation of the dynamic instability causing flicks. We compare the
transition value of stiffnesses predicted by our models to experiments and show that nonlinearity and large
deflections do not significantly affect critical transition values, while hydrodynamic interactions can change
transition values by up to 13%. Below the transition value, we observe precession of the flagellum, in which
it deflects off-axis to undergo nearly circular stable trajectories. However, only slightly below the transition
stiffness, nonlinearity in hook response destabilizes precession, leading to unstable deflections of the flagellum.
We conclude that while the linear hook response can qualitatively predict transition stiffnesses, nonlinear models
are necessary to capture the behavior of hooks for stiffnesses below transition. Furthermore, we show that for
the lower range of hook stiffnesses observed in actual bacteria, models which capture the full deformations of
hooks are necessary. Inclusion of the hydrodynamic interactions of the cell body, hook, and flagellum is required
to quantitatively simulate nonlinear dynamics of soft hooks during flick motility.
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I. INTRODUCTION

Flagellated bacteria swim by rotating helical flagellar fila-
ments for propulsion. To power this rotation, a bacterial motor
embedded in the cell body generates an almost constant torque
for a wide range of rotational speeds [1–3]. This torque is
transferred through a short flexible hook to the much stiffer
rotating flagella [4–6]. For the flagellar filament, the bending
stiffness is typically in the range of 1–10 pN μm2, while for
the hook, the bending stiffness varies widely between 0.0002–
0.2 pN μm2 for different species [4,6–8].

The elasticity of the hook is important in bacterial motil-
ity. The “run and tumble” motility of peritrichous bacteria
requires the hook to bend to allow flagellar filaments to bun-
dle and unbundle [9,10]. During a forward “run,” multiple
flagella—distributed around the cell surface and pointing in
different directions—must orient together to form a bundle.
For stable bundling, a certain stiffness and length of the hook
are necessary [11]. If hooks are too stiff or too short, the
flagella would not be able to orient together to form a bundle
[8,11,12]. The “run-reverse-flick” motility of monotrichous
bacteria requires the hook to bend during reorienting “flicks”
[4,5,13]. A monotrichous bacterium alternates forward and
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backward runs by changing the rotation of its single flagellum
at one pole from counterclockwise, with the flagellum pushing
the cell, to clockwise, with the flagellum pulling the cell.
During clockwise rotation of the flagellum, the hook unwinds
and its stiffness decreases. Upon switching to counterclock-
wise rotation, the pushing flagellum places the unwound hook
under compression and, after a short time, dynamical buckling
instabilities of the hook cause the flagellum to make large
deflections from the cell-body axis (a flick; Fig. 1) and reorient
the entire bacterium [4,5,13]. During this process, the counter-
clockwise rotation winds the hook and increases its stiffness,
and eventually it becomes stiff enough to stop buckling. Then,
the bacteria runs forward in a straight trajectory with its flag-
ellum on-axis. Thus, during preflick runs, the hook is unstable
to large deflections, while during postflick runs, the hook is
stable to large deflections.

To investigate the role of hook flexibility in different as-
pects of bacterial swimming dynamics, a number of different
models have been used in previous studies. The swimming
speed and stability of monotrichous bacteria [8], the insta-
bility of free-swimming multiflagellated bacteria to bundling
[10,14,15], and the dynamics of spinning bacteria close to
walls [16] have been studied by replacing the hook with a
linear bending spring connecting the cell body to the flag-
ella. The stiffness of the bending spring, kb, is obtained
from the bending stiffness EI and length LH of the hook as
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FIG. 1. A singly flagellated bacterium swims straight by rotating
its flagellum straight behind the cell body, and reorients by a flick of
its flagellum during which the flagellum undergoes large deflections
(characterized by θ ) associated with large nonlinear deformations of
the hook.

kb = EI/LH . In our previous work [5] investigating flick
motility, we showed that the hook also has an important tor-
sional response, and modeled it as a combination of linear
bending and torsional springs with stiffnesses calculated from
the linearization of a Kirchhoff rod model. We showed that
this simple model for hook bending, combined with a model
for swimming dynamics that ignores hydrodynamic interac-
tions between the flagellum, hook, and cell body, can predict
the experimentally observed torques needed to initiate flicks.

It seems likely that for large bending, complex three-
dimensional (3D) deformations (such as shown in Fig. 1) may
become important. While simple linear spring models allow
efficient computation and investigation for a wide range of
cell body, flagellum, and hook parameters, linear models of
hook response are not adequate for large hook deformations.
Instead, Kirchoff rod models of the hook can be used to
describe large hook deformations. Shum et al. investigated
the dynamics of free-swimming singly flagellated bacterium,
including the instability of straight swimming, by combining
a Kirchoff rod model of the hook with a boundary element
method to treat hydrodynamic interactions [17]. Park et al.
[18] investigated the locomotion of singly flagellated bacteria
during run-reverse-flick motility by modeling the flagellum
and hook filaments as elastic, extensible Kirchoff rods, while
describing hydrodynamic interactions by the method of regu-
larized Stokeslets.

While with enough resolution (and computational cost) the
approach of Shum et al. [17] can capture the full nonlinear
behavior of the hook, it is still unclear which aspects of flick
motility are dependent on the nonlinear large deformations of
the hook, rather than the simple linear bending response that
correctly predicts observed flick initiations [4,5]. In addition,
for large deflections of the flagellum, the hydrodynamic in-
teractions between the cell body and flagellum become more
important in describing the swimmer’s dynamics since the
surfaces of the flagellum and cell body are close to each other.
Previously, we have estimated that ignoring hydrodynamic
interactions between the cell body and flagellum produces
about 20% error in the swimming speed during runs, when
deflections of the flagellum are small (i.e., stiff hooks and
θ ∼ 0) [19–21], but errors could be significantly larger for
large deflections of the flagellum (flexible hooks).

Here, we determine which aspects of flick motility are
dependent on the effects of hook nonlinearity and large defor-
mations, and what effects hydrodynamic interactions have on

motility when there are large deflections of the flagellum. We
do this by studying progressively more faithful models for the
hook, starting with the previously employed (1) linear bending
springs and (2) linear bending and torsional springs, then
(3) models that incorporate nonlinearities due to larger hook
deformations, (4) Kirchhoff rod models that fully incorporate
large hook deformations, and, finally, a (5) numerical rod
model that also incorporates the hydrodynamic interactions of
the hook. We also employ models (1) through (4) both with
and without hydrodynamic interactions between the flagellum
and cell body to test the importance of those hydrodynamic
interactions.

We show that for stiff hooks, a bacterium swims with its
flagellum rotating on-axis. As the hook stiffness decreases,
there is a transition to swimming in which the flagellum pre-
cesses about the axis with a large deflection angle θ (Fig. 1).
The critical hook stiffness at which the transition occurs de-
pends on the cell-body and flagellum geometry, hook model,
and hydrodynamic interactions. For all hook stiffnesses below
the critical value, linear spring models predict precession;
however, for hook stiffnesses only slightly below the critical
value, nonlinear effects destabilize precession into complex
dynamics with large hook deformations. For these unstable
deflections, we find that the choice of nonlinear models or
Kirchoff rod models, as well as the inclusion of hydrodynamic
interactions, can produce significantly different flagellum and
cell-body trajectories. We demonstrate that for hook stiff-
nesses in the lower range of those observed biologically, large
deformations occur during flicks. We conclude that while on-
axis swimming and the destabilization of on-axis swimming
can be understood using only the linear response of the hook,
flick motility depends strongly on the nonlinear response of
hooks undergoing large deformations.

II. METHODS

In this section, we first briefly review the inextensible Kir-
choff rod model which can treat large deformations of thin
filaments such as the hook. Then we discuss simplified linear
and nonlinear parametrizations of the hook response which
can be derived from the Kirchoff rod model. Finally, we dis-
cuss how to couple these models of the hook to swimming and
deformation dynamics, including hydrodynamic interactions.

A. Inextensible kirchhoff rod
models of the hook

Since the diameter of the hook is only 10 nm and its typical
length is 100 nm, its elastic response can be treated as a
slender inextensible Kirchhoff rod connecting the cell body to
the flagellar filament, as described by Shum et al. [17]. During
swimming, the surrounding fluid applies hydrodynamic forces
and torques on the cell body, flagellum, and hook, but due to
the short length of the hook, we ignore hydrodynamic forces
on the hook itself.

We assume an initially straight and undeformed hook with
length LH and stiffness EI pointing along the x direction,
that connects an ellipsoidal cell body to a helical flagellum.
A molecular motor embedded in the cell body (body-
hook junction) generates torques in the x direction in the
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body-fixed frame and the hook transfers this torque to ro-
tate the flagellum. The flagellum is at least two orders of
magnitude stiffer than the hook for singly flagellated bacteria
[4,6]. We treated the flexibility of the flagellar filaments before
in our previous works [5,6], but here we assume rigid body
motion of the flagellum and cell body in order to isolate the
effects of the hook.

The Kirchhoff rod model treats the deformation of the hook
by describing the position of the centerline of the hook as a
curve in space, while tracking the orientation of cross sections
of material along the centerline. Bending of the hook changes
the orientation of material cross sections, producing elastic
forces and moments. Due to the microscopic size of bacteria,
they swim in the low Reynolds number regime, and at any
time the hook’s configuration and motion are such that force
balance and moment balance are satisfied.

To study the hook’s effects on the free-swimming dynam-
ics of bacteria, we are interested in the displacements and
orientations at the hook-flagellum junction due to the applied
forces F0, torques M0 with components M1, M2, and M3 in
the x, y, and z direction, respectively, and motor rotational
angle φM at the body-hook junction (Fig. 2). The orientation
and position of the flagellum at the hook-flagellum junction
are defined by polar angles α = [θ, φ, γ ] and displacement
X, respectively. The instantaneous orientation of the rigid
flagellum r̂ is the same as the direction of the hook end point
at the hook-flagellum junction [d1(LH )],

r̂=d1(LH )=cos(θ )x̂ + sin(θ )cos(φ)ŷ + sin(θ ) sin(φ)ẑ, (1)

in the local body-fixed frame. For constant motor torque
M1 = MM , the Kirchhoff rod solutions can be summarized by
defining vectorial input variables X = [φM, M2, M3, F0] and
a nonlinear response function G as

(
α

X

)
= G(X ; MM ). (2)

The details of the Kirchhoff rod model and how Eq. (2) is
computed are provided in Appendix A.

B. Simplified spring models of the hook

Here, we briefly describe simplified models of the hook
that can be derived from the Kirchhoff rod model. These
simplified models can include only the linear response or be
extended to include some aspects of the nonlinear response.

The full description of the hook response in Eq. (2) relates
applied forces and torques to the corresponding orientation
and displacement of the flagellum. However, for small de-
flections, previous studies have simplified this to effective
spring descriptions, for which it is assumed that since the
displacement X is small compared to the swimmer length
scale, most of the effects on the swimming dynamics come
from the relative orientation of the flagellum with respect to
the cell body [5,17]. The orientation of the flagellum (i.e., the
end of the hook) is then related to the torques acting on the
hook so the hook response is described by

(
θ

φ

)
= Gm(M⊥/MM , φT ). (3)

FIG. 2. Free-swimming model of singly flagellated bacteria.
(a) A hook connects a rigid helical flagellum to an ellipsoidal cell
body. The flagellar filament moves with translational and rotational
velocities (VF , �F ), respectively, and the cell body moves with trans-
lational and rotational velocities (Vc, �c ), respectively. The hook
applies force Fc and torque Mc to the cell body at the body-hook
junction, and equal and opposite force and torque to the flagellum
at the flagellum-hook junction, to satisfy force- and torque-free
conditions. (b) The bacterial motor embedded in the cell body at
body-hook junction x = 0 generates a constant torque MM in the
x direction in the local body frame attached to the cell body. An
orthonormal triad dB

1 , dB
2 , dB

3 following the material of the hook is
defined at the body-hook junction (x = 0, s = 0); dB

1 is always in the
x direction and (dB

2 , dB
3 ) rotate along with the motor rotor by an angle

φM along the x axis. The hook is initially undeformed and straight
along the x direction. During swimming, applied forces and torques
deform it so that the tangent direction at the hook-flagellum junction,
and hence the rigid flagellum orientation, is d1(LH ), described by
angles (θ, φ, γ ) via Eq. (1).

Note that by symmetry, θ and φ do not depend on φM . In addi-
tion, by dimensional analysis, we can rewrite the components

of the moment in terms of M⊥ =
√

M2
2 + M2

3 , the magnitude
of applied perpendicular torques, normalized by motor torque
MM , and φT , the angle that the perpendicular torque applied
on the hook makes with the z direction, with a positive angle
tending toward the negative y direction [5].

The simplest and most computationally efficient ap-
proaches are linear models in which the hook is replaced by
a linear spring. Here, we study two different linear models,
i.e., a linear bending spring, and a linear bending and torsional
spring. In the linear bending spring model, the hook deflection
angle θ is a linear function of the applied torque ratio M⊥/MM ,
so Eq. (3) becomes

θ = 1

kH

∣∣∣ M⊥
MM

∣∣∣, (4)

where the spring constant kH = EI/(LH MM ) depends on the
bending stiffness EI , length LH of the hook, and motor torque
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MM . For a pure bending spring, φ = φT , i.e., the hook bends
in a direction perpendicular to the applied torque.

In the linear bending and torsional spring model, we take
into account the fact that when subjected to both the applied
torque (M⊥) and the motor torque, the hook not only bends,
but also twists. This corresponds to including changes in both
θ and φ − φT at the flagellar end of the hook. In this approach,
the polar coordinates can be linearly related to the applied
torque as(

θ

φ − φT

)
=

(
αθ (kH )
αφ (kH )

)∣∣∣ M⊥
MM

∣∣∣ +
( 0
βφ (kH )

)
, (5)

where (αθ , αφ, βφ ) are parameters which are functions of
nondimensional hook parameter kH = EI/(LH MM ) (see Ap-
pendix B).

The linearized springs fail to capture nonlinearities in the
hook response for small stiffnesses or large loads acting on
the filament. To add nonlinear effects, we can use nonlinear
bending and torsional spring models with spring coefficients
that are also functions of the applied torques, M⊥/MM . Specif-
ically, we use a cubic interpolation to fit the hook behavior
such that (

θ

φ − φT

)
=

(
α′

θ

α′
φ

)∣∣∣ M⊥
MM

∣∣∣3

+
(

β ′
θ

β ′
φ

)∣∣∣ M⊥
MM

∣∣∣2

+
(

γ ′
θ

γ ′
φ

)∣∣∣ M⊥
MM

∣∣∣ +
( 0
δφ

)
. (6)

The details of this model and comparisons between the lin-
ear spring, nonlinear spring, and Kirchhoff rod response are
described in Appendix B.

C. Swimming dynamics of a singly flagellated bacterium

For a free-swimming bacterium, the force- and torque-free
conditions require that if a force Fc and torque Mc are ex-
erted on the cell body by the hook, then −Fc and −Mc are
exerted on the flagellum by the hook, as shown in Fig. 2(a).
To solve for the swimming dynamics using the full Kirchhoff
rod model [Eq. (2)], we start from a known initial condition
of forces and torques, (Fc, Mc) = (0, MM x̂) at t = 0, and we
need to determine the translational and rotational velocities of
the cell body (V c,�c) as well as the translational and rotation
velocities of the flagellum (V f ,� f ). In the low Reynolds
number limit and assuming rigid body motion for the cell
body and flagellum, we have⎛

⎜⎝
Fc

Mc

−Fc

−Mc

⎞
⎟⎠ = R

⎛
⎜⎝

V c

�c

V f

� f

⎞
⎟⎠, (7)

where R = [Rcc, Rc f ; R fc, R f f ] is the joint resistance matrix
of the cell body and flagellum. It can be computed includ-
ing all hydrodynamic interactions between the cell body and
flagellum, or we can ignore the hydrodynamic interactions
between the cell body and flagellum by isolating the cell body
and flagellum to calculate the resistance matrix Rcc (resis-
tance matrix of the cell body) and R f f (resistance matrix of
the flagellum), while the off-diagonal blocks are zero (R fc =
Rc f = 0). The resistance matrices are calculated using our
previously reported implementation [19,22–25] of the method

of regularized Stokeslets [26,27]. The relative velocities of the
cell body and flagellum determine the rate of change of the
displacement vector Ẋ = V f − V c and the relative angular
velocity � = � f − �c, while the geometric constraint ˙̂r =
� × r̂ determines the rates of changes of the polar coordinates
α [α̇ = [θ̇ , φ̇, γ̇ ]; Fig. 2(b)],

θ̇ = �z cos(φ) − �y sin(φ),

φ̇ = �x − cot(θ )[�y cos(φ) + �z sin(φ)],

γ̇ = �x − tan(θ/2)[�y cos(φ) + �z sin(φ)], (8)

where γ̇ is the rotation rate of the flagellar filament along its
centerline axis. Taking the time derivative of Eq. (2),

d

dt

(
α

X

)
= ∂G

∂X Ẋ . (9)

The partial derivative ∂G
∂X can be evaluated using a finite differ-

ence approach at each time step for known forces and torques
(X ) [17]. From Ẋ, α̇, and Eq. (9), we determine the rate of
changes of forces, torques, and motor rotation (Ẋ ), which are
integrated in time to obtain X . The trajectory of the flagellum
is obtained by integrating α̇ in time.

To solve for the swimming dynamics for the simplified
spring models, in which only the torques are known from
configuration of the flagellum [Eqs. (4)–(6)], we use Eq. (7),
but since the hook displacement is constant in these models,
the cell body and flagellum have the same velocity, V c =
V f = V . Then, Eq. (7) gives 12 linear equations which can
be solved for the 12 unknown components of V , �c, � f ,
and Fc in the body-fixed frame. To track the trajectory of the
flagellum specified by polar coordinates α, we calculate their
rates of changes given by Eq. (8). We numerically integrate α̇

in time to obtain the trajectory of the flagellum orientation.

D. Numerical inextensible rod model

In the Kirchhoff rod model described in Sec. II A, the
hydrodynamic interactions of the slender hook with the sur-
rounding fluid are considered to be negligible due to its short
length and small diameter. In general, one may be interested
in a more accurate model that includes hydrodynamic in-
teractions of the hook by discretizing the hook into small
segments of length 
s. The ratio of the timescale (τs) needed
to resolve the stretching dynamics of the hook to the timescale
(τb) needed to resolve the bending dynamics of the hook is
τs/τb = EI/(EA
s2) [6]. Since the typical diameter of the
hook is only 10 nm and we use fine discretization scales

s/d = 2 to capture nonlinear deformations of the hook, this
ratio is τs/τb ∼ 0.01, implying that extension of the hook is
much stiffer than bending. Thus the hook can be well approx-
imated as an inextensible filament [6]. We have developed a
numerical method, which discretizes inextensible Kirchhoff
rods moving in viscous fluids [6], appropriate for the large
deformations we study here.

Briefly (see Appendix C and Ref. [6] for details), in this
model the centerline of the hook is discretized into straight
cylindrical segments. For each segment, two different kinds
of forces and torques can be considered. External forces
and torques exerted on the segment by the surrounding fluid
through its surface are related to the motion of the cell body,
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TABLE I. Dimensions of the flagellar filament and cell body for V. alginolyticus [4,5].

Flagellar filament Hook Cell body

Flagellar Filament Helix Contour Axial Filament Length Relaxed bending Loaded bending Head Head
pitch radius radius length length diameter stiffness stiffness length width
P (μm) r (μm) R (μm) L (μm) Lx (μm) dH (μm) LH (μm) EI (pN μm2) EIw (pN μm2) 2a (μm) 2b (μm)

1.49 0.016 0.14 4.59 3.97 0.01 0.1 0.036 0.22 3.2 1.2

hook, and flagellum by a boundary element method for Stokes
equations [6], while internal forces and torques exerted on the
segment by neighboring segments through cross sections of
the filament are calculated from the Kirchhoff rod model. Net
force and torque balance on each segment allows us to solve
for the translational and rotational velocities of all segments.
Integrating these velocities in time describes the displacement
and orientation of the segments and hence the evolution of the
deformed shape of the hook filament, as well as the motion of
the cell body and flagellum.

E. Geometries and parameters

For numerical simulations, we use an ellipsoidal cell body
with major and minor axis of 2a and 2b, respectively. A
tapered helical flagellar filament with filament radius of r,
helical radius R, and helical pitch P is attached to the hook
and is initially placed along the x direction, with its centerline
described by [5,18,20–22]

rc(s) = (s + LH )x̂

+ R(1 − e−( 2πs
P )2

)
[
cos

(2πs

P

)
ŷ + sin

(2πs

P

)
ẑ
]
,

(10)

where LH is the length of the hook and s varies between
zero and flagellum axial length Lx (s ∈ [0, Lx]). The numerical
values for the geometry of the cell body and flagellar filament
are given in Table I. The motor is placed at x = 0, generating
constant counterclockwise (viewed from behind the cell body)
torque MM applied to the base of the hook. Deformation of the
hook changes the position and orientation of the rigid flagellar
filament over time according to Eq. (1).

III. RESULTS

Here, we first describe the qualitative flagellar behaviors
predicted by our models as hook stiffness varies. Then we
describe how the predicted behaviors change as different
physical effects are included in our models, which indicates
which physical effects are responsible for each behavior.

A. Flagellar orbits, stable precession, and unstable deflections

We calculate the trajectory of flagellum orientation (θ, φ)
during bacterial free swimming. We trace the instantaneous
centerline orientation r̂ [Eq. (1)] of the flagellum over time.
We characterize the swimming dynamics by the steady-state
trajectory of the flagellum in the body-fixed frame. Depending
on the model used for the simulation and stiffness of the hook,
we observe three general types of dynamics described in detail
below: orbits, precession, and unstable deflections.

For the stiffest hooks (largest kH ), the centerline of the flag-
ellum moves around x̂ such that the end point of the centerline
nearly traces a circular orbit [Fig. 3(a)]. The deflection angle
θ is small [plotted in Fig. 3(d)], meaning that the flagellum
makes very small deviations from its initial orientation. One
orbit of the end point occurs for each motor revolution. These
stable orbits correspond to nearly straight trajectories of the
cell body, as discussed in previous studies [5,8,17,18,22].

As the hook stiffness decreases below a critical value k∗
H ,

the behavior transitions from small orbits to large preces-
sion. During precession, typical deflection angles θ are much
larger than orbits and the radius of precession is comparable
to the swimmer’s length scale [Fig. 4(b)], but the flagellum
still traces a nearly circular trajectory around the central x̂
direction. In precession, one revolution of the flagellar tip
requires multiple motor rotations; each motor rotation is one
wiggle of the trajectory shown in Fig. 3(b). Precession has
been previously reported for linear models of the hook and
corresponds to helical trajectories of the cell body [5,8,16].

For even smaller hook stiffnesses, some models transition
to unstable deflections, in which the deflection angle of the
flagellum increases without saturating, as shown in Fig. 3(c).
Unstable deflections have previously been seen in full rod
models of the hook [17,18,28] and may correspond to three-
dimensional reorienting trajectories of the cell body for both
rigid [17] and flexible [18] flagella.

To differentiate stable precession from unstable deflec-
tions, we plot the deflection angle θ as a function of motor
revolution φm (which increases monotonically as time in-
creases) as in Fig. 3(d). In Fig. 3(d), we use examples
computed using the linearized and full models for a hook pa-
rameter kH = 0.5 slightly below the critical value k∗

H = 0.57.
For the linearized model, after a transient (for φm > 500), the
deflection angle θ oscillates around 27◦, representing preces-
sion. In contrast, for the full Kirchhoff rod model, we observe
unstable deflections: the angle θ increases without saturating;
we stop the simulation when the flagellum hits the cell body
(at θ ≈ 80◦).

To compare different models, we plot the steady-state de-
flection angle of the flagellum as a function of hook stiffness
kH in Fig. 4. For unstable deflections, we plot a vertical line.
For stiff hooks (kH > k∗

H ), all the models predict a stable orbit,
but k∗

H differs for the different models. For less stiff hooks
or greater motor torques (kH < k∗

H ), orbits become unstable
and instead the flagellum precesses [Fig. 3(b)]. For the linear
spring models, precession occurs for all kH < k∗

H . For the
nonlinear spring model, Kirchoff rod model, and numerical
inextensible models, there is a small range right below the
critical values (0.98 < kH/k∗

H < 1) where precession is ob-
served, but for smaller kH , unstable deflections are observed
instead. Table II summarizes the behavior of different models
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FIG. 3. Examples of flagellar trajectories relative to the cell body for orbits, stable precession, and unstable deflections generated using
the Kirchhoff rod model. The end of the flagellum traces a nearly circular trajectory (blue-dashed line) for (a) small orbits with kH > k∗

H and
(b) large precession with 0.98 < k∗

H/kH < 1 during free swimming. (c) The flagellum orientation traces unstable deflections for softer hooks,
kH < 0.98k∗

H . The motor torque is MM = 2 pN μm for these simulations. (d) The corresponding instantaneous deflection angle θ is plotted as
a function of motor revolution φM for orbits (yellow line: kH = 0.6 > k∗

H ) and precession (blue line: kH = 0.5 < k∗
H ) for the linearized bending

and torsional spring model. The deflection angle increases without saturating for unstable deflections obtained from the full Kirchhoff rod
model (orange line).

for small (kH < k∗
H ) and large (kH > k∗

H ) hook stiffnesses.
The different models incorporate different physical effects,
so below we use the differences in predicted behaviors to
determine the importance of those physical effects in causing
these behaviors.

B. Transition from small orbits to large
deflections—comparison to experiments

The critical hook parameter k∗
H defines the transition from

small orbits to precession. k∗
H depends on the geometries of

the cell body and flagellum, motor torque, and hook stiffness
(since kH = EI/MMLH ). Here, since we use the same geom-
etry (Table I) for all simulations, the different values of k∗

H in
Fig. 4 are due to the different physical effects considered in
this study. The smallest critical value (k∗

H ≈ 0.41) is predicted
by the linear bending spring. The linearized hook response
(linear bending and torsional spring), nonlinear bending and
torsional spring, and the full Kirchoff rod model predict the
same critical value k∗

H ≈ 0.57 (all neglecting hydrodynamic
interaction between the cell body and flagellum). This is rea-
sonable since the stability of orbits can be calculated while
deflections remain small, and so all these models effectively
behave in the linear regime. Including hydrodynamic inter-
actions between the cell body and flagellum increases the

critical transition values by about 10% to k∗
H ≈ 0.63 (only the

linearized model with hydrodynamic interactions is shown by
the black curve in Fig. 4). Including the hydrodynamic inter-
actions of the hook as well (numerical inextensible model)
predicts k∗

H ≈ 0.65, only 3% larger than the value without the
hydrodynamic effects of the hook.

Flicks are initiated by the dynamic buckling instability
when kH = EI/MMLH < k∗

H [5]. For each model mentioned
above, the critical k∗

H depends on body and flagellum geom-
etry. We compare the predictions of different models with
previously reported experimentally observed runs [4,5]. In
these experimental runs, the cell-body geometry and the
swimming speed were reported for 54 preflick and 21 postflick
runs of different cells of Vibrio alginolyticus [4]. Experimen-
tally, it is observed that the preflick runs have an unwound
hook (with small bending stiffness EIu; see Table I) and are
unstable to a flick deformation of the hook, while the postflick
runs have a wound hook (with large bending stiffness EIw; see
Table I) and are stable to flick deformations. In our previous
paper [5], we calculated kH = EI/(MMLH ) for each run, by
evaluating the motor torque MM for free-swimming cells by
matching the measured swimming speed for each cell-body
geometry to the value calculated using the method of regular-
ized Stokeslets [5]. The value of EI is chosen to be EIu or
EIw for pre- or postflick runs, respectively, while LH is given

TABLE II. Behavior of different models for varying hook stiffnesses in the biologically relevant range 0.18 < kH < 1.1.

Linear bending Linear bending Nonlinear bending Full Kirchhoff Numerical
spring and torsional spring and torsional spring rod model inextensible model

Orbit kH > k∗
H kH > k∗

H kH > k∗
H kH > k∗

H kH > k∗
H

Critical k∗
H 0.26 < k∗

H < 0.41 0.46 < k∗
H < 0.57 0.46 < k∗

H < 0.57 0.46 < k∗
H < 0.57 0.58 < k∗

H < 0.73
Precession kH < k∗

H kH < k∗
H 0.98 < kH/k∗

H < 1 0.98 < kH/k∗
H < 1 0.98 < kH/k∗

H < 1
Unstable Not observed in Not observed in kH < 0.98k∗

H kH < 0.98k∗
H kH < 0.98k∗

H

deflections validity range validity range
Validity Accurate for Accurate for Accurate for Accurate Accurate
for kH kH > 0.6 kH > k∗

H kH > 0.4
Hook Not included Not included Not included Not included Included
hydrodynamics
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FIG. 4. Steady-state deflection angle θ of the flagellum for differ-
ent hook stiffness parameters kH . Unstable deflection of the flagellum
cannot be characterized by steady-state motions and are represented
by vertical lines. The simple bending spring model (squares, orange)
predicts the smallest critical values of k∗

H = 0.41 for the destabiliza-
tion of orbits. The linearized bending and torsional spring (circles,
blue), nonlinear spring, and full rod model without hydrodynamic in-
teractions (triangles, yellow) give the same critical value k∗

H = 0.57.
Hydrodynamic interactions between body and flagellum change crit-
ical values by about 10% for the linearized bending and torsional
spring (circles, black). The numerical inextensible model of the hook
including hydrodynamic interactions of the hook, cell body, and
flagellum predicts k∗

H = 0.65.

in Table I. The value of 1/kH for each run is plotted in Fig. 5.
Then, for each model used in this paper, we calculate the
range of k∗

H from the different cell-body geometries, assuming
the same flagellum parameters (Table I) for all different cells.
Thus, for each model, we obtain a range of critical parameters

FIG. 5. Calculated 1/kH values of stable runs (blue triangles)
should lie in the stable regime to the left of the critical values
predicted by the dynamic buckling instability from different models,
while those of dynamically unstable runs (red circles) should lie to
the right of the predicted critical values. Nearly all unstable runs
do not exceed the static Euler buckling criterion (solid line). Each
colored region is the range of critical values calculated for different
experimental bacterial geometries by the labeled set of models. The
linear bending spring (BS, purple) does not predict about half of the
preflick runs. The numerical inextensible model (NIM, yellow) accu-
rately describes all observed runs. The linear bending and torsional
spring (LM), nonlinear bending and torsional spring (NS), and full
Kirchhoff rod (KR) models without hydrodynamic interactions (all
the same green band) predict all but three preflick runs correctly,
while with hydrodynamic interactions (turquoise band), they predict
all but one preflick run correctly.

k∗
H , which is the range reported in the second row of Table II.

In Fig. 5, we also plot the range of 1/k∗
H predicted by each

model as vertical bands of different colors.
Comparing the 1/kH values of the runs to the calculated

critical values, we expect that the stable postflick runs should
be to the left of the 1/k∗

H bands, while the unstable preflick
runs should be to the right of the 1/k∗

H band. The vertical
black line is the critical 1/k∗

H corresponding to the static Euler
buckling criterion [5]; since most of the dynamically unstable
preflick runs (red circles) are to the left of the criterion, it
does not predict flick initiation well. The simple bending
spring model (purple band) predicts only about half of preflick
runs correctly, while the linear bending and torsional spring,
nonlinear bending and torsional spring, and full Kirchhoff rod
model (green band, all without hydrodynamic interactions of
the cell body and flagellum) predict all but three preflick runs
correctly. Adding cell body and flagellum hydrodynamic in-
teractions to these models (turquoise band) makes them even
more accurate, and they predict all but one of the experimental
preflick runs correctly. Finally, including hydrodynamic inter-
actions of the hook (yellow band, the numerical inextensible
model) accurately predicts all preflick runs.

C. Transition to unstable deflections

While the linear spring models predict precession for all
kH < k∗

H , the nonlinear springs, full Kirchoff rod, and nu-
merical inextensible models all predict that precession only
occurs for 0.98 < kH/k∗

H < 1, and for smaller kH , unstable
deflections are observed. Thus nonlinearity is sufficient to
destabilize precession for most kH , and linear models are not
adequate to describe the flagellum dynamics even qualita-
tively. Note that (as indicated in Table II and discussed in the
next section) the nonlinear bending and torsional spring is also
not accurate for very flexible hooks (kH < 0.4).

To understand the deficiency of the linearized model, we
first compare the hook response of the linear bending and tor-
sional spring, nonlinear bending and torsional spring, and full
Kirchoff rod, for kH = 0.5 (slightly below k∗

H ), at which the
linear model predicts precession but the other models predict
unstable deflections. We generate a trajectory using the full
Kirchhoff rod model by applying constant motor torque MM

and calculate the polar angles (θ, φ), as well as the perpendic-
ular torque M⊥, and torque angle φT as a function of time.
The black curves in Figs. 6(a) and 6(b) show these results
for the full Kirchoff rod model. Then, for each set of angles
(θ, φ, φT ) of this trajectory, we also find the perpendicular
torque in the linearized and nonlinear bending and torsional
spring models [Eqs. (5) and (6), respectively), and plot those
as the blue and orange curves, respectively, in Figs. 6(a) and
6(b). By comparing the curves in Fig. 6(a), we see that the
response of the deflection angle θ for all three models is
quite similar, with differences of less than 5%, but the actual
twisting angle φ − φT response is quite nonlinear. Including
nonlinearity as in the nonlinear spring model seems to be
enough to destabilize precession.

Nonetheless, it is also evident from Fig. 6(b) that the twist-
ing response of the nonlinear spring is still quite different
from that of the full Kirchhoff rod model, especially at small
M⊥/MM . To understand the origin of this difference, note
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FIG. 6. Accuracy of the linear (blue) and nonlinear (orange) bending and torsional spring models for flagellum deflections and swimming
directions at kH = 0.5. (a),(b) The deflection angles (θ, φ) are compared to the exact response of the hook (Kirchoff rod model, black) as
a function of applied torque ratios. (c) The instantaneous deflection angle θ is plotted as a function of motor revolution φm for trajectories
generated by the linear bending and torsional spring (blue line), nonlinear bending and torsional spring (orange line), and full Kirchhoff
rod model (black line). The linearized model predicts stable precession with deflection angle of about 27◦. The nonlinear spring and full
Kirchoff rod models predict unstable deflections, but with different trajectories of the cell body as identified by the alignment parameter
q = (Vc · x̂)/|Vc|, where Vc is the velocity of the cell body in the fixed laboratory frame (dashed lines and right axes).

that the spring models were obtained by assuming a typical
axial force in the x direction of 1 pN μm and ignoring any
perpendicular forces. On the other hand, the full Kirchhoff
rod model includes force and displacement effects given by
Eq. (2). Ignoring the effects of perpendicular forces in the
nonlinear spring yields a monotonic response of the twisting
angle [orange curve in Fig. 6(b)], while the fluctuations of
the twisting angle in the Kirchhoff rod model (black curve)
are due to the force effects (black line). These fluctuations
are most significant for small applied torques M⊥/MM < 0.2,
while torque effects dominate for larger applied torques and
large deflections.

While the nonlinear spring ignoring the force effects does
produce the correct qualitative behavior of unstable deflec-
tions, due to the differences with the full Kirchhoff model,
it does not produce quantitatively accurate trajectories. In
Fig. 6(c), we plot the deflection angle θ and the alignment pa-
rameter q = (Vc · x̂)/|Vc| (Vc is the velocity of the cell body
in the fixed laboratory frame) between the cell-body axis and
the x direction as a function of motor revolution during tra-
jectories generated by the linear bending and torsional spring
model, nonlinear spring model, and full Kirchhoff model.
In all cases, kH = 0.5, as in Figs. 6(a) and 6(b). Both the
nonlinear and full Kirchhoff models show deflection angles
corresponding to unstable deflection, but their deflection and
alignment parameter are quite different quantitatively.

D. Very flexible hooks and large deformations

To determine when large deformations of the hook start
to become important, we consider the entire range of hook
stiffnesses measured during run-reverse-flick motility, which
due to winding and unwinding of the hook can be quite large.
For Vibrio, this range is measured to be 0.18 < kH < 1.1,
for which the smallest and largest values correspond to the
unwound and wound states of the hooks, respectively [4,5].
At the small unwound hook stiffness, we expect the hook
response (and hence the swimming dynamics) to be very
sensitive to the applied forces and torques, and show complex
and large deformations.

To investigate the hook’s response and deflections for a
range of stiffnesses, we show the hook shapes and deforma-

tions alongside plots of the deflection and twisting angles as
a function of applied torques for different kH in Fig. 7. For
stiffer hooks (kH > 0.4), the hook end orientations (θ, φ) are
monotonic functions of the applied torque M⊥/MM , and hook
deflections can be approximated by a simple cantilever beam
under small loads. On the other hand, for less stiff hooks
(kH < 0.4), the hook end orientations are highly nonlinear and
the deformations are complex 3D curves. This nonlinearity
in θ is significant enough to make M⊥/MM a multivalued
function of θ [the yellow and purple curves of Fig. 7(a)],
which cannot be captured using a single-valued nonlinear
spring model. Thus, to study the dynamics of hook in this
lower range of stiffnesses, large and complex deformations
need to be accounted for, as is possible with either the full
Kirchhoff rod model or the numerical inextensible model.

E. Effect of hydrodynamic interactions on hook dynamics

The effects of hydrodynamic interactions between the cell
body, flagellum, and hook on the critical transition value
k∗

H was discussed in Sec. III B. We showed that including
hydrodynamic interactions between the cell body and flagel-
lum modifies k∗

H by about 10%, and including hydrodynamic
interactions with the hook modified k∗

H by only 3%. These
relatively small effects on the destabilization of orbits reflect
the fact that during orbits, the hook remains almost straight
with small deflection angles, so the flagellum stays far from
the cell body.

However, for the large deflections observed during preces-
sion and unstable deflections, the flagellum is closer to the
surface of the cell body and we expect significant hydrody-
namic interactions between the cell body and flagellum that
can affect the swimming dynamics of bacteria. To see the
effect of hydrodynamic interactions between the cell body and
flagellum on swimming velocities, we take the trajectory used
in Fig. 6, which was generated using the full Kirchhoff rod
model for kH = 0.5 without hydrodynamic interactions, and
plot Vx, the velocity along the swimming direction, and �x,
the cell-body angular velocity about the swimming direction,
as a function of deflection angle in Figs. 8(a) and 8(b). Then, at
each time, we also compute these velocities including hydro-
dynamic interactions for each configuration in the trajectory
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FIG. 7. Large and nonlinear deformations of soft hooks. (a) The deflection angle θ is shown for varying hook stiffness as a function
of applied torque ratio M⊥/MM . For kH < 0.4, θ is not a monotonic function of applied torque ratios, and for kH = 0.2, its behavior is
highly nonlinear. The shapes of the deformed hook are plotted alongside each curve; nonmonotonic behavior is correlated with large complex
deformations. (b) The deflection angle φ is shown as a function of applied torque ratio.

that was generated without hydrodynamic interactions. Note
that the force and torque on the cell body and flagellum are the
same with and without hydrodynamic interactions since they
are determined by the motor torque and hook shape (via the
Kirchhoff rod model). Including hydrodynamic interactions
of the cell body and flagellum, the swimming speeds are
decreased by about 38% for small deflections (θ < 1), and can
change by up to 80% for large deflections. The effect of hy-
drodynamic interactions on the rotation rate of the ellipsoidal
cell body is about 5% for small deflections and 10% for larger
deflections, as plotted in Fig. 8(b). We plot the difference in
velocities, 
V , between velocities calculated with and with-
out hydrodynamic interactions in Fig. 8(c), from which it can
be seen that hydrodynamic interactions produce even greater
changes in the other components of the swimming velocity
(Vy,Vz).

The results shown in Fig. 8 isolate the effect of hydro-
dynamic interactions on velocities, but since the velocities
change, including hydrodynamic interactions also changes the
entire trajectory of hook deformations, flagellum orientations,
and the cell body. To show how hydrodynamic interactions
change the trajectories, we generate separate trajectories using
the full Kirchoff rod model with and without hydrodynamic

interactions for kH = 0.5, and plot the hook deflection angle
θ and cell-body alignment parameter q as a function of mo-
tor revolution in Fig. 9. While both trajectories have similar
deflection angles θ , the alignment of the cell body is quite
different over time, predicting different behaviors for free-
swimming bacteria due to the changes in velocities shown in
Fig. 8.

IV. DISCUSSION AND CONCLUSION

During flick motility, the hook varies in stiffness over two
orders of magnitude, which leads to a variety of dynamical
behaviors, such as orbits, precession, and unstable deflections.
We have studied how these behaviors arise from the linear
response, nonlinear response, and large deformations of the
hook.

For stiff hooks in orbits with small deflections, the be-
havior of the hook is linear and the hook can be replaced
by more efficient linear bending and spring models. For this
regime, errors arising from ignoring hydrodynamic interac-
tions are about 40% on the free-swimming speeds of bacteria.
As the hook stiffness decreases, we described critical values
where the trajectory of the flagellum transitions to precession.

FIG. 8. The effect of hydrodynamic interaction (HI) between the cell body and flagellum on swimming velocities for various deflection
angles θ . (a) The velocity along the x axis (swimming direction) normalized by Vx0, the velocity at θ = 0 for the noninteracting case. (b) The
cell-body angular velocity �x about the swimming direction normalized by �x0, the angular velocity at θ = 0 for the noninteracting case.
(c) The difference 
Vx,y,z between velocities with and without hydrodynamic interactions as a function of motor angle φM during a trajectory.
The corresponding deflection angle θ is plotted on the right axis.
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FIG. 9. The effects of hydrodynamic interactions on the swim-
ming dynamics. While the deflection angle θ (solid lines, left axes)
is similar with and without hydrodynamic interactions, the instan-
taneous alignment parameters q of the cell body (dotted lines, right
axes) differ due to the cumulative effect of different swimming ve-
locities predicted with and without hydrodynamic interactions. The
inset shows trajectories of the flagellum end point with (blue) and
without (red) hydrodynamic interactions.

Because the transition still involves small hook deformations,
the behavior of the hook is still linear. We identified critical
hook stiffnesses k∗

H with flick initiation and compared the
critical values to experimental observations. We found that
replacing the hook with linear bending and torsional springs
predicts the observations well, but the predictions can be im-
proved by considering the hydrodynamic interaction between
the cell body, flagellum, and hook.

As the hook stiffness decreases further, we found that
nonlinear effects destabilize precession for kH < 0.98k∗

H , pro-
ducing unstable deflections, while linear models fail to capture
this qualitative behavior. However, nonlinear spring mod-
els are still quantitatively inaccurate when compared to full
Kirchoff rod models since they do not properly capture the
twisting behavior of the hook.

For very flexible hooks with kH < 0.4, large deformations
of the hook become important and their shapes become com-
plex curves. This range of stiffnesses is important biologically
when bacteria reverse to forward motility in short preflick
runs. The corresponding large flagellum deflections make hy-
drodynamic interactions more significant and change the total
swimming dynamics.

In conclusion, understanding the flick motility of a free-
swimming bacteria requires incorporating different physical
phenomena when the stiffness varies widely during flick. For
stiff hooks, the critical stiffness at which straight-swimming
orbits are destabilized can be predicted by linear models.
However, flick motility can involve softer unwound hooks
which are more sensitive to the applied load and show very
nonlinear dynamics which must be treated accurately in order
to obtain the true swimming dynamics of bacteria. To achieve
this, a full treatment of the hook dynamics (Kirchhoff rod
model and numerical inextensible model) and inclusion of

hydrodynamic interactions of the cell body, flagellum, and
hook are required to quantitatively simulate flick motility.
Note that we do not use a centerline discretization of regu-
larized Stokeslets for the hook and filament in our numerical
Kirchhoff rod models. This is due to the fact that centerline
regularized Stokeslets [18] have limited resolution in dis-
cretization of the hook into segments since Stokeslets have
a blob parameter, and hence spacing, of the same order as
the filament’s diameter [25]. The typical length to diameter
ratio of the hook is L/d ≈ 10 [6], suggesting that centerline
regularized Stokeslets would allow only approximately 10
segments, not enough to accurately describe large deforma-
tions of the hook [6].

In this paper, we assume rigid flagellar filaments and con-
sidered flexible hooks with a constant (in time) stiffness in
our simulations. However, since the stiffness of the hook
changes as it is wound during flick motility, it is necessary
to understand the true hook winding dynamics and stiffness
as a function of time in order to understand the whole pro-
cess of the flick motility. Furthermore, in our previous work
[5], we showed that the flexibility of the flagellar filaments
could be significant during flick motility because of large
loads due to large deflections of the flagellum. Both non-
linear hook effects and flagellum flexibility can destabilize
precession independently, but should be combined in future
work to accurately model flick motility. For such future work,
which combines both the time dependence of hook stiffness
and flagellum flexibility, this study suggests that it is most
appropriate to use the numerical inextensible model, which
can spatially resolve bending of both the hook and flagellum,
include time-dependent hook stiffnesses, as well as include all
hydrodynamic interactions.

ACKNOWLEDGMENTS

We acknowledge support from Grants No. CBET-1805847
and No. CBET-1651031 (H.C.F.) and the University of Utah
Center for High Performance Computing.

APPENDIX A: INEXTENSIBLE KIRCHHOFF ROD MODEL
OF HOOK

In this Appendix, we describe the inextensible Kirchhoff
rod model following an approach used in our previous pa-
per [5] and a report by Shum et al. [17]. The undeformed
straight hook of length LH is in the x direction in the body-
fixed frame, connecting the ellipsoidal cell body to a helical
flagellum (Fig. 2). The deformed centerline of the hook is
defined by a three-dimensional curve x(s) with an associated
orthonormal triad {d1(s), d2(s), d3(s)} as a function of the arc
length s ∈ [0, LH ]. d2(s) and d3(s) describe the orientations
of the material cross sections and d1(s) = ∂x/∂s describes the
tangent to the centerline.

A cross-sectional force F and moment M are exerted by
the material with greater s on the material with lesser s. The
constitutive law for the moment is

M = GJκ1d1 + EI (κ2d2 + κ3d3), (A1)

where the twist vector κ = κi(s)di(s) measures the local cur-
vature of the rod via ∂sdi = κ × di, EI is the bending stiffness
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related to Young’s modulus E , and GJ is the torsional stiffness
of the rod related to shear modulus G. I and J are second
moments of the cross-sectional area about the bending or
twisting axis, respectively.

The Kirchhoff equations for the force and torque balance
are

∂sF + f = 0, ∂sM + d1 × F + m = 0, (A2)

where f and m are external hydrodynamic force and torque
densities per length, respectively. Ignoring hydrodynamic in-
teractions of the filament with surrounding fluid, we assume
f = 0 and m = 0 for the Kirchhoff rod model. Equation (A2)
together with Eq. (A1) yield a system of system of Ordinary
Differential Equations,

d′
i = κ × di,

κ ′
1 = 0,

κ ′
2 = −(F · d1) + κ1κ3(� − 1),

κ ′
3 = (F · d2) − κ1κ2(� − 1),

x′ = d1, (A3)

where (·)′ = ∂ (·)/∂s, and � = GJ/EI is the ratio of the
torsional to bending stiffness. We solve these using a fourth-
order Runge-Kutta scheme.

The initial conditions at s = 0 are F0, M0, and dB
i =

di(s = 0), i = 1, 2, 3. Working in the local frame attached
to the cell body as shown in Fig. 2, dB

1 = [1, 0, 0] is in
the x direction, while dB

2 = [0, cos(φM ), sin(φM )] and dB
2 =

[0,− sin(φM ), cos(φM )] are given by the motor angle φM ,
where ω = φ̇M is the angular velocity of the motor. The
initial torque M0 can be decomposed into the known motor
torque MM in the dB

1 direction and two unknown perpendicular
components of M2 and M3 in the dB

2 and dB
3 directions, respec-

tively, as M0 = MMdB
1 + M2dB

2 + M3dB
3 . These perpendicular

components are constraint torques which keep the hook per-
pendicular to the body at the hook-body junction. The rod
solutions for the ODEs in Eq. (A3) as the initial conditions
vary can be summarized by the nonlinear response function
given in Eq. (2).

APPENDIX B: LINEAR AND NONLINEAR BENDING
AND TORSIONAL SPRING CONSTANTS

To obtain parameters for linear and nonlinear bending and
torsional springs described in Eqs. (5) and (6), we parametrize
the hook response given by Eq. (3) for applied torque ratios
M⊥/MM . Without loss of generality and for a given motor
torque MM in the x direction, we consider the case where
the nonmotor component of M0 is in the z direction (M3 >

0, M2 = 0, φT = 0), as shown in Fig. 2 for zero motor ro-
tation angle φM = 0. Thus, the orientation of d1 [described
by (θ, φ)] is a function of applied torque M3/MM and kH =
EI/(LH MM ). For a given kH and axial force of 1 pN in the x
direction (a typical value for straight swimming), we find that
the hook’s end point orientation (θ, φ) can be approximated
by a linear [Eq. (5)] or nonlinear [Eq. (6)] function of M3/MM

in the regime experienced by V. alginolyticus (1 < MM <

4 pN μm [29], 0.1 < M3/MM < 1.1 during flick motility [5]).
The coefficients αθ , αφ , and βφ for linear bending and tor-

sional spring depend on the given hook parameter kH as

αθ = +0.002/k4
H − 0.078/k3

H + 0.048/k2
H + 0.978/kH ,

αφ = −0.021/k4
H + 0.111/k3

H − 0.084/k2
H + 0.026/kH ,

βφ = 0.5/kH . (B1)

In the same way, the coefficients α′
θ , β ′

θ , γ ′
θ α′

φ , β ′
φ , γ ′

φ , and
δ′
φ for nonlinear bending and torsional spring depend on the

given hook parameter kH as

α′
θ = +0.025/k4

H − 0.191/k3
H + 0.279/k2

H − 0.107/kH ,

β ′
θ = −0.034/k4

H + 0.186/k3
H − 0.259/k2

H + 0.097/kH ,

γ ′
θ = +0.011/k4

H − 0.092/k3
H + 0.058/k2

H + 0.976/kH ,

α′
φ = −0.064/k4

H + 0.277/k3
H − 0.305/k2

H + 0.093/kH ,

β ′
φ = +0.045/k4

H − 0.166/k3
H + 0.225/k2

H − 0.066/kH ,

γ ′
φ = −0.011/k4

H + 0.045/k3
H − 0.047/k2

H + 0.013/kH ,

δ′
φ = 0.5/kH . (B2)

The coefficients in Eqs. (B1) and (B2) are plotted in Fig. 10
as a function of 1/kH . The corresponding errors for the linear
and nonlinear bending and torsional springs are <14% and
<1.4%, respectively, relative to the Kirchoff rod calculation
of (θ, φ) for the ranges 0 < 1/kH < 2.5, where αθ reaches to
its maximum at kH ≈ 0.4 (Fig. 10).

APPENDIX C: NUMERICAL INEXTENSIBLE ROD MODEL
INTERACTING WITH SURROUNDING FLUID

In the final model, we include hydrodynamic interac-
tion of a slender hook filament with its surrounding fluid
medium. Since the typical diameter of hook filament is only
10 nm, assuming circular cross sections, the stretchability
ratio, which is the ratio between stretching to bending stiff-
ness, is EA/EI = 16/d2

H = 4 × 104 (1/μm2), meaning that
the hook filaments are almost inextensible [6]. Thus, we can
use our numerical inextensible model to obtain swimming
dynamics and hook response for a free-swimming bacterium
[6]. The details of this model are described in our recent
paper [6], but briefly, the centerline [defined by space curve
x(s)] of the slender hook filament between the cell body and
flagellum is discretized into M straight cylindrical segments
of equal length 
s and diameter dH along its centerline in
the x direction. Initially segments are between M + 1 material
points along the arc length such that sm = m
s, labeled by
integer index m = 0, 1, 2, . . . , M. We use half-integer values
to specify the center of the cylinders, sm+1/2. From the con-
stitutive relations of the Kirchhoff rod [6,30] and assuming
� = GJ/EI = 1,we calculate the torque Mm transmitted be-
tween discretized segments,

Mm
i = EI


s

[(
dm+1/2

j − dm−1/2
j

) · dm
k

]
,

Mm =
3∑

i=1

Mm
i dm

i , (C1)

where (i, j, k) is any cyclic permutation of (1,2,3). Equation
(C1) and a discrete form of Eqs. (A2) yield the total external
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FIG. 10. (a) Coefficients for linear bending and torsional springs [Eq. (B1)] as a function of hook parameter kH . (b) Coefficients for
nonlinear bending and torsional springs [Eq. (B2)] as a function of hook parameter kH .

force and torque from the surrounding fluid on the center of
the segments,

Mm+1/2 =Mm−Mm+1− 
s

2

(
dm+1

1 ×Fm+1+dm
1 ×Fm

)
,

Fm+1/2 = Fm − Fm+1. (C2)

Here, Fm+1/2 = fm+1/2
s and Mm+1/2 = mm+1/2
s. The
force and torque at the free end are zero (Fm = 0, Mm =
0) and the force transmitted between the cross sections at
point m can be described by the summation of external
forces on segments from the end point to the mth segment
as Fm = ∑M

i=m Fm+1/2. Note that the total force and torque
applied on the cell body are equal to the force and torque
at s = 0; Fc = F0 and Mc = M0 satisfy force- and torque-
free conditions on the swimmer. Thus, given a configuration
at one instant of time, we have 3 + 3M knowns (3 com-
ponents of the cell-body force and 3M components of the
cross-sectional torques of the segments) after combining these
equations.

Next, we couple these calculated torques with hydro-
dynamic interactions of segments to find translational and
rotational velocities of segments. The hydrodynamic interac-
tions are described by the surface boundary element method
(BEM) [17,31,32], where the surface of segments is dis-
cretized by N equal triangular elements with Ng points on
the circular cross sections, the ellipsoidal cell body is trian-
gulated by Nc elements, and the helical flagellar filament is
triangulated by Nf elements. By this approach, the transla-

tional and rotational velocities of the cell body and segments
({Vm+1/2, �m+1/2}) are related to the external torques and
forces ({Fm+1/2, Mm+1/2}) through a global resistance ma-
trix R including all hydrodynamic effects of the triangular
elements [6,25]. Although there are 6M velocities and angu-
lar velocities, the inextensibility of the filament reduces the
number of independent velocities to 3 + 3M, as follows. The
inextensibility condition requires that the tangent vector of
the centerline is equal to d1 (∂x/∂s = d1) and thus ∂V/∂s =
�(s) × d1(s). In discrete form, this second condition means
that the translational velocities at the centers of the segments
can be obtained from the translational velocity of the cell body
(or, equivalently, the first segment) and all the segment rota-
tional velocities [6]. Thus, we only need to solve for 3 + 3M
unknowns (3 components of translational velocity of the cell
body and 3M components of rotational velocity of segments)
equal to the number of equations and knowns calculated from
cross-sectional torques, as explained above. Integrating the
translational and rotational velocities in time, we trace the
trajectory of the segments in the local body frame attached
to the cell body.

For the numerical analysis, the initially straight hook at
t = 0 is discretized into 100 uniform cylindrical segments,
and for the hydrodynamic interactions, cross sections are
discretized by 12 points, leading to 920 triangular boundary
elements [32]. We also consider hydrodynamic interactions
between the cell body and flagellar filament using the same
boundary element method where the surface of the body and
rigid flagellum is discretized by 640 and 3200 triangular ele-
ments, respectively.
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