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Incompressible Quantum Liquids and New Conservation Laws
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In this Letter, we investigate a class of Hamiltonians which, in addition to the usual center-of-mass
momentum conservation, also have center-of-mass position conservation. We find that, regardless of the
particle statistics, the energy spectrum is at least q-fold degenerate when the filling factor is p=q, where p
and q are coprime integers. Interestingly, the simplest Hamiltonian respecting this type of symmetry
encapsulates two prominent examples of novel states of matter, namely, the fractional quantum Hall liquid
and the quantum dimer liquid. We discuss the relevance of this class of Hamiltonian to the search for
featureless Mott insulators.
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In the twentieth century, the basic notions of ‘‘symme-
try’’ and ‘‘order’’ have set a paradigm that gave rise to a
lasting cross-fertilization between various branches of
physics. Landau [1] first put forth the idea that, in the
process of ordering, a system also becomes less symmetric.
This phenomenon is commonly known as ‘‘symmetry
breaking’’ and underlies our general understanding of or-
der in a wide variety of systems. Ordering is such a
ubiquitous tendency of nature that it is difficult to give an
example where a system remains unordered to the lowest
temperatures. In recent years, condensed matter physicists
have been asking whether the electrons in a solid can
remain unordered at absolute zero temperature.

Following Anderson’s proposal of the ‘‘spin liquid’’ [2],
a novel magnetic state with no order, for the past 20 years
condensed matter physicists have expended tremendous
effort searching for unordered electronic states in solids
[3–5]. Recently, there has been significant theoretical
progress in demonstrating the stability of some examples
of such states and, hence, proving that they are, in princi-
ple, possible [6–8]. In addition, it has been shown that
there is a strong tie between such states and the phenome-
non of ‘‘quantum number fractionalization’’ [9]. Concur-
rent with these efforts, there has been an extensive pursuit
for microscopic models exhibiting these properties [10–
15]. The traditional guideline for such pursuits has been
‘‘frustration’’ (see, e.g., [16–18]). In this Letter, we adopt a
different viewpoint and investigate whether quantum dis-
ordered fermion or boson states can arise from unusual
conservation laws.

It is commonly perceived that one of the most difficult
situations for a system to be free of symmetry breaking is
in fractionally filled Mott insulators. For bosons, the filling
factor is just the average number of particles per crystalline
unit cell, and, for electrons, it is half that quantity. In this
Letter, we view any nondisordered insulating state as a
Mott insulator if the insulating property cannot be attrib-
uted to the Pauli exclusion principle. Whether a fraction-
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ally filled Mott insulator can be ‘‘featureless’’ (i.e.,
unordered) has been a central issue of debate in recent
years. So far, all known such systems possess order [19].
For example, a half-filled square lattice of boson atoms is
only known to be Mott insulating when the atoms localize
in a checkerboard pattern and, hence, break the symmetry
of the original lattice [20].

Physicists have only recently begun to understand the
reason why symmetry breaking usually accompanies Mott
insulators. This progress is due to generalizations [21,22]
of an earlier theorem by Lieb, Schultz, and Mattis [23]. In
particular, Oshikawa [21] has argued that, when a fraction-
ally filled Mott insulator has an energy gap between its
ground state(s) and excited states, it must have ground state
degeneracy. In particular, if the filling factor is p=q, the
ground state must be at least q-fold degenerate. Empiri-
cally, this degeneracy is always achieved by breaking
symmetry. In the boson Mott insulator example given
above, a twofold degeneracy arises because there are two
distinct, complementary, checkerboard-ordered patterns.
For the time being, we will use the phrase ‘‘Mott insulator’’
to refer to a fractionally filled Mott insulator with an
energy gap.

Symmetry breaking is one way to produce the degener-
acy required by Oshikawa’s result. However, if there were
a way to produce this degeneracy independently of sym-
metry breaking, it would provide a candidate route to
finding featureless Mott insulators. In the following, we
show that imposing center-of-mass (c.m.) momentum and
position conservation is one such way.

Theorem: Simultaneous conservation of center-of-mass
momentum and position guarantees q-fold degeneracy of
the energy spectrum.—Consider a D-dimensional lattice.
We impose periodic boundary conditions in a certain di-
rection, say, the x direction, of the lattice. Let L be the
spatial period in this direction and T be the operator of
translation by one lattice constant in the x direction. The
‘‘cross section’’C of the lattice is defined such that the total
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number of unit cells is given by CL. Following Oshikawa,
let us now consider filling factor � � p=q and C relatively
prime to q. In this case, Oshikawa’s argument tells us that
the ground state is at least q-fold degenerate if there is an
energy gap.

The (exponentiated) c.m. position in the x direction
modulo L is given by

U � exp
�
i
2�
L

X
~r

xCy~r C~r

�
: (1)

The simultaneous conservation of the c.m. momentum and
position implies �H;U� � �H; T� � 0. Because of this, we
can choose the eigenstates of H to be simultaneous eigen-
states of U. In addition, since

T�1UT � exp
�
i
2�
L

X
~r

�x� 1�Cy~r C~r

�
� ei2�Cp=qU; (2)

we obtain

UT � ei2�Cp=qTU: (3)

Now we show that q consecutive actions of T on any
energy eigenstate generates q degenerate orthogonal states
differentiated by their eigenvalue with respect toU. Let the
eigenstate in question be denoted by jei�; Ei, where ei� is
the eigenvalue with respect to U and E is the energy
eigenvalue. Because the translation operator commutes
with the Hamiltonian, the state Tjei�; Ei is also an eigen-
state of H with the same energy. However, its eigenvalue
with respect to U is

UTjei�; Ei � ei2�Cp=qTUjei�; Ei

� �ei2�Cp=qei��Tjei�; Ei: (4)

The different eigenvalue with respect to U implies that the
two energy eigenstates jei�; Ei and Tjei�; Ei are orthogo-
nal. We can perform this operation q times before we arrive
at a state with the original U eigenvalue. Hence, there is at
least a q-fold degeneracy.

Motivated by the above observations, we would like to
analyze Hamiltonians featuring c.m. position and momen-
tum conservation to determine if they lead to featureless
Mott insulators. The simplest nontrivial such Hamiltonian
is

H �
X

R;x;y

g�x; y�CyR�xC
y
R�xCR�yCR�y : (5)

This Hamiltonian hops a pair of particles while conserving
their c.m. position. In general, it is quite difficult to solve
for the eigenstates of this type of Hamiltonian. However,
for a special one-dimensional case, some insight can be
gained due to a connection with a well-studied problem in
physics, the fractional quantum Hall effect. To be specific,
we consider the Trugman-Kivelson (TK) Hamiltonian
[24], which has Laughlin’s 1=3 wave function [25] as the
ground state. When studied on a torus with dimensions Lx
and Ly, the TK Hamiltonian can be written in terms of the
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creation or annihilation operators of the lowest Landau
level as follows [26]:

H �
X
R;x;y

f��x�f�y�CyR�xC
y
R�xCR�yCR�y;

f�x� � �3=2
X
n

�x� nL�e��
2�x�nL�2 :

(6)

Here

L � LxLy=2�l2B; � � 2�lB=Ly: (7)

In the above, lB �
��������������
@c=eB

p
is the magnetic length. This

Hamiltonian acts upon a system of spinless fermions on a
ring of L sites at filling factor 1=3.

One important consequence of the connection between
Eq. (6) and the quantum Hall effect on a torus is an unusual
property of Eq. (6), which we call duality. By performing
Fourier transforms, it is simple to show that, when written
in terms of operators that create and annihilate particles in
a fixed momentum state, Eq. (6) reads

H �
X
Q;k;q

~f��k�~f�q�CyQ�kC
y
Q�kCQ�qCQ�q; (8)

where ~f�k� �
P
xe
i2kxf�x�. For the f used in Eq. (6), ~f has

the same form as f. This implies that the Hamiltonian in
the momentum space is also described by Eq. (6) except
�! 2�

�L . The factor 2�=L arises from the lattice constant
in the reciprocal space. For each L, there is a special �
value (�� �

������������
2�=L

p
) for which the real space and momen-

tum space � are the same. The duality implies that energy
spectra at � and 2�=�L are identical. From the perspective
of the quantum Hall liquid on a torus, the duality merely
signifies that interchanging Lx and Ly leads to the same
physical system.

Analyzing the Hamiltonian equation (6), we find that,
for all practical purposes, the ground state is a featureless
Mott insulator when � is small. In addition, we find the
surprising fact that, on a torus with finite circumference in
one direction (but infinite circumference in the other), the
Laughlin liquid has nonvanishing density wave order and is
adiabatically connected to a Wigner crystal.

First, we focus on the large � limit. In the large � limit,
we can expand the Hamiltonian in the parameter e��

2
. As a

result, Eq. (6) is accurately approximated by

H �
XL
i�1

�f�1=2�2ni�1ni � f�1�
2ni�2ni�; (9)

where ni � C�i Ci. This Hamiltonian imposes energy pen-
alties for having nearest-neighbor and next-nearest-
neighbor particles. Its ground states are ‘‘Wigner crystals’’
where one out of every three lattice sites is occupied.
Clearly, at � � 1=3 there are three such ground states.
These ground states possess density wave order (and,
hence, are not featureless).
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To quantify the degree of crystalline order, we introduce
the order parameter O associated with a spatial period of
three lattice constants:

O �
1

N

XL
j�1

ei�2�=3�jhnji: (10)

In the above, N is the total particle number, and hnji is the
expectation value of the site occupation in (any one of) the
ground state(s). O is normalized such that its modulus
becomes unity in the extreme crystalline limit. In
Fig. 1(a), we plot O as a function of �, evaluated numeri-
cally for system sizes L � 6; 9; . . . ; 24. For � 	 1:5, we
obtain O 
 1, implying that the ground state is nearly a
perfect crystal. As expected, as � decreases the order
parameter decreases and practically vanishes below � 

0:5 [27]. This finding raises an important question: Is the
regime below � � 0:5 a featureless Mott insulator? The
weak size dependence of the crystalline order parameter
near � � 0:5 is inconsistent with the existence of a con-
tinuous phase transition, which is required if the state
below � � 0:5 is truly free of crystalline order. The smooth
evolution of O with � rules out the possibility of a first-
order phase transition. Indeed, while the order parameter
becomes exponentially small at small � (numerical preci-
sion limits our study to � * 0:25), a careful analysis of the
numerical data indicates that, at any finite �, it will not
vanish as L! 1. Using standard methods of extrapolation
[28], we find that the order parameter for L! 1 is given
by exp��1=����2�, where ���� vanishes linearly at � � 0
FIG. 1 (color online). The density wave order parameter and
the energy gap of Eq. (6) as a function of �. Data are obtained for
L � 30. (a) The crystalline order parameter. Inset: The quantity
� � �� logO��1=2, extrapolated to L � 1 using the alternating
epsilon algorithm [28]. The smooth curve is a polynomial fit of
the data for 0:25< �< 0:45 (crosses). (b) The energy gap for
data restricted to �L > 12 and even particle number (see text).
Inset: The energy gap is plotted versus Of�1�2. Dark gray (blue)
and light gray (red) symbols are for � > 1:1 and � < 1:1,
respectively. Two distinct branches are clearly visible.
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[see inset in Fig. 1(a)]. According to this result, density
wave order exists as long as � � 0.

In terms of the quantum Hall connection, the fact that
the Laughlin liquid on a torus with any finite Ly (and
infinite Lx) has a nonzero density wave order is very
surprising (to us at least). From the perspective of a 1D
lattice problem, however, it can be shown that, in general,
there exists a local order parameter that can be used to
distinguish the degenerate ground states required by
Oshikawa’s argument [29,30]. However, e.g., for � �
0:25, the crystal order is 15 orders of magnitude weaker
than that at � � 1:5. Hence, for all practical purposes, this
is a state without order.

In the following, we carefully study the energy gap as a
function of � to demonstrate that (i) the system is a Mott
insulator for all �, and (ii) there is no quantum phase
transition between the large and small � regimes. In
Fig. 1(b), we show the numerically computed energy gap
vs � for system sizes up to L � 30. Only data for even
particle numbers (to avoid even/odd effect) are used. The
limit L! 1 and � fixed amounts to studying a Hall torus
with Lx ! 1 and fixed Ly fixed. To avoid a finite size
effect from small Lx, we restrict Lx > 12lB or, equiva-
lently, �L> 12 (for L � 30, � > 0:4). With these restric-
tions, the data points collapse onto a single curve, as shown
in Fig. 1(b). Note that, according to this result, the gap
remains robust even in the ‘‘transition regime’’ around � �
0:5. According to quantum Hall physics, the energy gap
should not depend on Lx or Ly when both are much greater
than lB. Thus, for � < 0:4 (or Ly > 5�lB for the Hall
torus), we expect little variation in the extrapolated gap
value. The asterisk in Fig. 1(b) is obtained by extrapolat-
ing the gap value at ���L� to L � 1 [31].

From these results, the energy gap is nonzero for all �
[32]. However, in the inset in Fig. 1(b), we demonstrate
that two different mechanisms cause the energy gap at
small and large �. For large �, the gap is the energy penalty
of having next-nearest-neighbor particles. The latter quan-
tity is proportional to f�1�2O. However, the energy gap
plotted against f�1�2O exhibits two branches, indicating a
different mechanism for the energy gap at small � values.
Hence, the small � state is not just an ordinary crystal with
extremely small order. Thus, even in the most unfavorable
case (1D), our approach has succeeded in producing a Mott
insulator that is practically featureless. In higher dimen-
sions, where there are no theorems forbidding featureless
states, we expect Eq. (5) will lead to truly featureless Mott
insulators (see later discussion on quantum dimer models).

Our analysis also leads to important implications for the
fractional quantum Hall liquid on a torus. In the quantum
Hall community, it is well known that, when Ly is large
compared to lB (i.e., when � is small), the Laughlin state on
the torus should be practically indistinguishable from that
in the infinite 2D plane (L! 1, � � 0). Quite unexpect-
edly, however, our findings imply that the Laughlin state in
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this regime is adiabatically connected to a state with strong
crystalline order at small Ly [33]. The above result reveals
a danger in overinterpreting adiabatic continuity, because
the Laughlin state is clearly qualitatively different from the
electron crystal. However, since discrete quantum numbers
are preserved by adiabatic continuity, both the ground state
degeneracy and the quasiparticle charge are the same in the
quantum Hall and the crystal states. The obvious threefold
degeneracy of the electron crystal originates from the three
distinct center-of-mass positions of the system. The excited
states of the crystal are domain walls carrying�1=3 charge
due to the Su-Schrieffer counting argument [34].

Our findings are consistent with the notion that the
Laughlin state on a finite torus has topological order. As
proposed by Wen and Niu [3], unlike in a symmetry broken
state, disorder lifts the ground state degeneracy of a topo-
logically ordered state by an amount that is exponentially
small in the system size. In our case, such exponential
dependence comes from the weak order parameter itself.
Based on this, we conclude that, despite the common
perception, the presence of symmetry breaking order
should not be taken as excluding topological order.

Our belief that Eq. (5) can lead to truly featureless Mott
insulators in higher dimensions is supported by the follow-
ing connection to the quantum dimer model [10]. The
quantum dimer model is a special case of the bosonic
version of Eq. (5) in two dimensions. Indeed, once dimers
are reinterpreted as point bosons residing at bond centers,
the quantum dimer Hamiltonian becomes a center-of-mass
position conserving model described by Eq. (5). Moessner
and Sondhi [11] argued that the quantum dimer model on a
triangular lattice exhibits an unordered quantum phase.
This supports our belief that Eq. (5) leads to truly feature-
less Mott states in higher dimensions.

Finally, although we have focused on Mott insulators,
gapless states described by Eq. (5) are equally interesting.
We can prove that such a gapless system cannot be an
ordinary metal (fermions) or a superfluid (bosons), because
center-of-mass position conservation implies the absence
of Drude weight/superfluid density. For example, in one
space dimension, such a gapless liquid will not fall within
the usual Luttinger liquid paradigm.

To conclude, we have presented the idea that simulta-
neous conservation of c.m. position and momentum can
lead to fractionally filled featureless Mott insulators. It is
remarkable that the simple model given by Eq. (5) unifies
systems as diverse as the quantum Hall liquid and the
quantum dimer liquid, whose effective field theories are
as different as Chern-Simons gauge theory and Z2 gauge
theory, respectively. We hope our results will spur the
exploration of new directions and lead to a wealth of new
states of matter that have, so far, escaped our attention.
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