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Minimal geometric requirements for micropropulsion via magnetic rotation
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Controllable propulsion of microscale and nanoscale devices enhanced with additional functionality would
enable the realization of miniaturized robotic swimmers applicable to transport and assembly, actuators, and
drug delivery systems. Following biological examples, existing magnetically actuated microswimmers have
been designed to use flexibility or chirality, presenting fabrication challenges. Here we show that, contrary
to biomimetic expectations, magnetically actuated geometries with neither flexibility nor chirality can produce
propulsion, through both experimental demonstration and a theoretical analysis, which elucidates the fundamental
constraints on micropropulsion via magnetetic rotation. Our results advance existing paradigms of low-Reynolds-
number propulsion, possibly enabling simpler fabrication and design of microswimmers and nanoswimmers.

DOI: 10.1103/PhysRevE.90.033007 PACS number(s): 47.61.−k, 47.63.Gd, 47.63.M−, 87.85.gf

Nanoscale and microscale swimming robots have been
intensely investigated due to their many possible applications,
including micromanipulation and microfabrication [1,2], drug
delivery [3,4], tissue manipulation [2,5], and in situ sensing [6],
such as in vivo diagnostics [7–9]. However, difficulties in
developing effective propulsion systems have limited their
development. Microscale propulsion has been achieved using
electrically and optically controlled bacteria [10], magnetically
steered swimming cells [11], optically deformed three-bead
systems [12], biflagellate micro-objects [13], and chemically
driven phoretic robots [14–22]. Here we focus on another
broad class of robotic microswimmers, those actuated by
rotating magnetic fields. Swimming at microscales and be-
low vastly differs from macroscales since viscous damping
dominates inertial forces, implying that the hydrodynamics
are governed by the zero-Reynolds-number Stokes equation.

Some magnetically actuated microswimmers and
nanoswimmers, such as colloidal walkers [23], rotors [24],
nanowires [25], and drillers [26] rely on nearby surfaces
for propulsion, which limits their range of applicability.
Away from surfaces, in bulk fluids current efforts to make
robotic microswimmers have followed biological examples
that use either chirality or flexibility to achieve nonreciprocal
swimming strokes (i.e., strokes that do not trace the same
sequence of configurations forward and backward in time),
as required for force- and torque-free biological swimmers
by the Scallop theorem [27]. The archetypal chiral strategy is
the bacterial flagellum, which is a nearly rigid helix rotating
relative to the cell body [28]. The rotating flagellum forms
a helical traveling wave so it is not a reciprocal motion.
Various artificial helical swimmers [29–35] have achieved
controlled propulsion under magnetic rotation. The archetypal
flexible strategy is the sperm flagellum. Nonreciprocal
traveling waves propagate down the flexible flagellum to
produce propulsion even for in-plane (hence achiral) beating
patterns [36]. Flexible artificial swimmers include spermlike
swimmers fabricated by DNA linkage [36] and nanowire
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robots [37,38]. Based on these biomimetic expectations,
challenging fabrication techniques have been required to
create chiral or flexible structures.

Here, we show that neither chirality nor flexibility is
necessary for propulsion of robotic microswimmers actuated
by external rotating magnetic fields away from surfaces. We
demonstrate experimentally that an achiral, rigid colloidal
microswimmer constructed of three magnetic beads is capable
of externally actuated locomotion and is easily maneuvered.
We present a theoretical analysis that elucidates the criteria
that apply for rigid microswimmers rotated by external torque,
establishing fundamental guidelines for designing such mi-
croswimmers and nanoswimmers, which may lead to simpler
fabrication of magnetic microswimmers than currently used.

I. METHODS

A. Fabrication of achiral microswimmers

We fabricated achiral microswimmers using three ferro-
magnetic microparticles (4.40 μm in diameter) linked together,
forming the simplest structure for a microswimmer. Naturally,
dipole interactions tend to self-assemble the magnetic particles
linearly, but we need to make a bent geometry. Chemical
streptavidin-biotin binding was used to overcome the linearity
of the magnetic self-assembly to form the curved structures
necessary for swimming.

The swimmers contain two types of particles. Both of those
particles possess the same magnetic properties and are of the
same size (4.40 μm). The difference between the two types
of beads is the surface coating: one with streptavidin, and
the other with biotin. The two are diluted using 30 mg/mL
NaCl solution to 0.1 mg/mL and then combined in a reaction
mix to make the three-bead microswimmers. The dilution
was used to avoid aggregation and increase the probability to
create three-bead swimmers. This mixing method introduces
randomness to the fabrication process; nonetheless, three-bead
structures can be obtained in this process. Another concern is
the rigidity of the swimmers. Some three-bead structures are
prone to deformation while under a magnetic field, while others
are relatively rigid. As detailed in Sec. II A, only swimmers that
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have a rigid structure were used for experiments. The binding
affiliation between streptavidin and biotin is the strongest
among naturally found noncovalent bonds [39,40], so the
swimmers will be relatively unbreakable and rigid [41] while
under strong magnetic forces during experiments.

B. Magnetic control of swimmers far from surfaces

To generate the rotating magnetic field which actuates the
achiral microswimmers, we used a control system consisting of
three pairs of electromagnetic coils arranged in an approximate
Helmholtz configuration (see Appendix), three Kepco power
supplies (BOP 20-5M), a National Instruments data acquisition
(DAQ) system, a computer, an inverted microscope (Leica DM
IRB), and a high-speed camera (FASTCAM SA3). Through
the use of a DAQ system, the power supplies generate
sinusoidal outputs to the coils to create a rotating magnetic
field. The high-speed camera provides visual feedback and
records videos at high frame rates (60–100 fps). The computer
is used as interface for the camera and the DAQ system. The
three pairs of coils are designed to exert torque on the swimmer
without introducing translational force by creating a spatially
uniform magnetic field with any specified time-dependent
magnitude and direction in a 2 mm × 2 mm × 2 mm
region. Experiments take place with swimmers immersed in
0.3 g/mL NaCl solution (viscosity of 1 mPa s) in a 3 mm ×
3 mm × 2 mm (L × W × H) polydimethylsiloxane (PDMS)
chamber, sealed to minimize fluid flow and evaporation,
and placed at the center of the approximate Helmholtz coil
system mounted on the microscope. The concentration of the
NaCl solution was chosen to minimize vertical drift from
sedimentation or buoyancy, indicating that the swimmers
have density less than 1.2 g/mL. A video is provided
showing a swimmer located far from a boundary [42]. At
this and higher concentrations, we observed some beads
rising due to buoyancy. Out of many imaged videos, we
analyzed those where the vertical drift from sedimentation

or buoyancy was smallest, so that the swimmer could be kept
in the plane of focus. The focal plane was always at least
20 μm from the chamber surfaces. As described later, we also
insured that boundary effects were negligible by observing the
direction of swimming motion relative to the magnetic field
rotation axis: boundary effects make swimmers roll along the
surface in a direction perpendicular to the rotation axis, while
bulk swimmers move in a direction along the rotation axis [43].

C. Three-dimensional image processing and analysis

Changes in structure, swimmer rotation, and swimmer
translation are quantified using a three-dimensional (3D)
tracking algorithm written in MATLAB. Since the structure of
the swimmer consists of three spherical beads, the algorithm
tracks the three Cartesian positions (x,y,z) of each bead.
Planar positions (x,y) are obtained from the centroid of
the bead images. Vertical positions (z) are obtained from a
standard-deviation-based algorithm that detects the changes
in intensity of the beads which correspond to changes in the
distance from the focal plane (see autofocusing algorithms
reviewed by Sun et al. [44]).

II. CONTROLLED ACHIRAL RIGID MICROSWIMMERS

We fabricated an achiral microswimmer consisting of three
ferromagnetic spherical beads (4.40 μm average diameter)
linked together, which forms a simple structure for a swimmer
[Fig. 1(a)]. Dipole interactions tend to lead to linear self-
assembly of the magnetic particles, so streptavidin-biotin
binding [39,40] was used to stabilize randomly formed bent
nonlinear structures necessary for swimming. Since the centers
of the three beads define a plane of mirror symmetry (even
for beads of different diameters), the structure is achiral.
After assembly, the swimmer has a magnetic dipole, which
allows us to manipulate its orientation by applying a spatially
uniform, time-dependent magnetic field. The swimmers are

FIG. 1. (Color online) Controlled achiral rigid microswimmers. (a) The microswimmers’ three-bead structure contains a plane of symmetry
making it achiral. (b), (c) Schematic of flexibility tests to quantify microswimmers rigidity under (b) impulsive reorientation and (c) steady
rotation. The microswimmer’s structure is measured by the three-dimensional distances between each pair of beads (d12, d23, d13). (d) Percentage
change in (d12, d23, d13) during impulsive reorientation. (e) Percentage change in (d12, d23, d13) during swimming with data points captured
once per cycle when the swimmer is nearly perpendicular to the line of sight. In (d) and (e) distances change less than 5% indicating rigid
geometry. (f) Trajectories of achiral microswimmers showing swimmers controlled to swim in different patterns and make sharp turns.
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large enough that Brownian motion is negligible compared to
observed swimming velocities [45].

A. Rigidity of swimmers

Due to the randomness in the fabrication process, not
all microswimmers were rigid. The results reported are for
those which do not deform by visual inspection. We further
quantified the rigidity of these swimmers by observing their
response to time-dependent magnetic fields (Figs. 1(b) and 1(c)
and Supplemental video [42]). First, to determine whether
the swimmer elastically deforms in response to torque, its
geometry was observed while it reoriented in response to a
time-dependent magnetic field. Swimmers were first allowed
to come to equilibrium in a static field, with dipole moment
aligned with the field. Then the static field was changed
instantaneously to a direction perpendicular to the original
direction while maintaining the same magnitude [Fig. 1(b)].
This sequence imposes a sudden torque on the swimmer, which
relaxes as the swimmer reorients to align its moment with
the field. During the reorientation, we tracked the distances
between the three beads [d12, d23, d13, Figs. 1(b) and 1(c)] in
three dimensions. Second, to determine whether the swimmer
irreversibly deforms under the torques exerted by rotating
fields, we investigated the change in swimmer geometry while
it was rotated continuously (as might occur during swimming)
about the x axis [Fig. 1(c)]. In this and our swimming
experiments, the magnetic field is perpendicular to its rotation
axis. We tracked the distance between beads over six periods
of rotation (1.5 seconds), a time comparable to those used
to measure swimming velocities. To minimize error in the z

displacements, we measure the distances once per rotation,
when the swimmer plane is oriented nearly perpendicularly to
the line of sight. Representative results from the rigidity tests
for a visually rigid swimmer are shown in Figs. 1(d) and 1(e).
The lengths d12, d23, and d13 change by less than 5%.

The observed <5% deformations are not responsible for the
propulsion, since as detailed in Sec. III our theoretical model
shows that rigid swimmers of similar geometries are capable
of propulsion, and the model estimates swimming speeds of
the same order of magnitude as those observed.

B. Swimming and motion control

We observe that the direction of the average velocity is
along the rotation axis of the field. The swimmer rotates along a
body-fixed axis as it swims. Altering either the angular velocity
or magnitude of the applied rotating magnetic field alters the
body-fixed rotation axis and the velocity of the swimmer.
In contrast, swimmers relying on boundary effects roll in a
direction perpendicular to the rotation axis of the field [43],
and we use this fact to ensure that the swimmers we observe
are not affected by a boundary.

To validate swimming capability and controllability of
the achiral swimmer, we changed the strength, direction,
and frequency of the rotating magnetic field. The swimming
direction can be controlled by manipulating the direction of
the magnetic fields rotational axis. To control motion in the xy

plane we use the approximate Helmholtz coil system to apply
a time-dependent magnetic field B = Bi[sin θ sin(ωt + φ)î +

cos θ sin(ωt + φ)ĵ + sin ωt k̂] that rotates with angular veloc-
ity ω = ω(− cos θ î + sin θ ĵ) (which is the average swimming
direction). The phase φ is either −90◦ or 90◦. By changing θ

the achiral swimmer could make sharp turns at any angle (see
SM video). Figure 1(f) and the Supplemental video [42] show
several swimming trajectories illustrating directional control.
For these trajectories, the rotational frequency and field
strength were kept constant, maintaining constant swimming
speed. In addition, turning the field on and off or reversing the
rotation resulted in starting and stopping motion or direction
reversal, respectively.

III. GEOMETRICAL REQUIREMENTS FOR SWIMMING

The swimmer described above demonstrates the ability
to convert external rotational torque to translational motion
without a chiral or flexible geometry. Here we analyze the
coupled rotational and translational motion of the achiral
swimmer working in a frame fixed relative to the body of the
swimmer (principal axes of rotation e1, e2, e3 in Fig. 2; e2 and
e3 are perpendicular to the symmetry planes of the swimmer),
and show that such motion is consistent with the principles of
low-Reynolds number hydrodynamics.

In the Stokes regime, the translational velocity v and angular
velocity � are related to the force F and torque N on the
swimmer by the 6 × 6 mobility matrix [46]:(

v
�

)
=

(
K C
CT M

) (
F
N

)
, (1)

where the 3 × 3 submatrices K, M, and C relate the transla-
tional velocity and force, rotational velocity and torque, and
translational velocity and torque, respectively.

For a swimmer with permanent magnetic dipole m, the
torque N on the swimmer due to the external field is N =
m × H, where H is the magnetic field, and for the uniform
fields in the experiment there is no net external force. Therefore

FIG. 2. (Color online) Schematic for analyzing swimmer dynam-
ics in body-fixed frame. e1, e2, and e3 are the principal axes of M;
e2 and e3 are perpendicular to the symmetry planes of the swimmer.
For steady rotation, the swimmer angular velocity � coincides with
the magnetic field rotation, and the magnetic field H and its angular
velocity are constant in the body-fixed frame. The magnetic field is
perpendicular to its angular velocity.
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the instantaneous angular velocity is

� = M(m × H). (2)

In general, as the swimmer and the external field rotate
independently, the orientation of H changes relative to the
body-fixed frame. However, a steady-state solution arises if
the swimmer angular velocity � is equal (in magnitude and
direction) to the magnetic field rotation ω.

Now assume that rotational dynamics are in steady state, as
is the case when the swimmers are observed to rotate with the
field. Then the translational velocity produced by the external
torque is

v = C(m × H), (3)

which like the angular velocity is time independent in the body-
fixed frame. Generically, an object with constant body-fixed
v and � moves in circular or helical trajectories [47]. A net
translational swimming velocity requires a helical trajectory,
for which v · � �= 0. Thus, the minimal criteria for swimming
are that the swimmer rotation � [Eq. (2)] is equal to the field
rotation ω, and � · [C(m × H)] �= 0.

A necessary condition for swimming is that C is nonzero.
Based on standard symmetry analyses [46], geometries with
axisymmetry or three perpendicular mirror planes of symmetry
have C = 0 and no swimming, but geometries with up to two
perpendicular mirror planes of symmetry can have nonzero C
and produce swimming. In particular, swimming is possible for
rigid, achiral geometries. To be concrete, consider a swimmer
composed of three equally sized beads such as those fabricated
for our experiments [Fig. 1(a)]. For this geometry, symmetry
analysis reveals that M and C take the form [46]

M =
⎛
⎝M1 0 0

0 M2 0
0 0 M3

⎞
⎠ ; C =

⎛
⎝0 0 0

0 0 C23

0 C32 0

⎞
⎠ (4)

referred to the body-fixed axes labeled e1, e2, e3 in Fig. 2 [48].
We also verified the form of the mobility matrix by explicit
calculation for rigid bodies composed of beads of diameter
4.40 μm using the method of regularized Stokeslets [47,49,50]
(see Appendix for details).

Substituting these mobility matrices into Eqs. (2) and (3)
shows that for this achiral swimmer, the torque must have
both ê2 and ê3 components in order for swimming to be
possible. This implies that m cannot lie along either the
2 or 3 directions, which are the directions perpendicular
to the symmetry planes of the swimmer. Solving Eqs. (2)
and (3) explicitly for a geometry corresponding to our achiral
three-bead swimmers confirms that under external rotating
torques, such geometries swim with the order 1 μm/s speeds
observed in our experiments (see Appendix for details).

Note that the propulsion of our swimmers is consistent
with the Scallop theorem and kinematic reversibility of the
Stokes equations: as a rigid body, our swimmers do not
undergo swimming deformations and instead are actuated by
a nonreciprocal external torque. Here we point out that the
chirality employed in previous examples of rigid magnetically
rotated swimmers is not necessary to have nonzero C and
hence swimming.

If a steady solution to Eq. (2) exists (� = ω), it depends on
both the frequency of rotation and the strength of the magnetic

field. An important timescale of the rotational dynamics is the
typical timescale for rotation of the swimmer due to an external
field of magnitude |H|, which is determined by balancing
viscous rotational drag against the external torque. From
Eq. (2), the timescale is given by Tviscous = (||M|||m||H|)−1,
where ||M|| is the typical magnitude of rotational mobility
of the particle. If Tviscous is short compared to the timescale of
variation of the magnetic field (TB = 2π/ω), then the swimmer
is in a quasistatic regime, with its magnetic dipole always
nearly aligned with the external field. If Tviscous is much longer
than TB , then the swimmer cannot rotate quickly enough to
follow the magnetic field, and the swimmer will not rotate
steadily. For steady-state solutions in the intermediate regime
the dipole is not aligned with the external field, producing
enhanced torques, hence the rotation axis of the swimmer
varies.

FIG. 3. (Color online) Response of swimmer to rotation fre-
quency. (a) The rotational axis (demarcated by red dashed line)
changes relative to swimmer’s orientation as rotation frequency
changes with constant field strength. The swimmer’s rotation transi-
tions from a symmetrical axis (low frequencies) to a non-symmetrical
axis (high frequencies). (b) Swimming speed of seven different achiral
microswimmers as frequency and field strength are varied with their
ratio held constant. Equation (2) predicts a linear relation; linear fit
data and ratio of frequency to field strength are reported in Table I.
Due to the random fabrication process, each swimmer has a different
geometry hence different swimming speed. (c) Swimming speed of
the six different microswimmers as frequency is varied for constant
field strength, including the microswimmer in (a) shown as swimmer
6. Error bars in (b) and (c) denote standard errors estimated from
position uncertainty in image analysis and observation time used to
measure velocity.
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TABLE I. Linear regression values for the seven microswimmers in Fig. 3(b).

swimmer 1 2 3 4 5 6 7

Slope (μm s−1mT−1) 0.4454 0.3770 0.3435 0.2972 0.6614 0.4567 0.3492
R2 0.9309 0.9799 0.8567 0.9745 0.9989 0.9662 0.9729
f/H (Hz/mT) 0.551 0.734 0.734 0.743 3.67 5.51 5.51

IV. QUALITATIVE PREDICTIONS AND EXPERIMENTS

To satisfy Eq. (2) for a given ω, the magnetic field H and
its rotation vector ω must take specific orientations relative
to the swimmer, which varies as ω varies. Since � = ω, the
direction of ω also sets the swimmers rotation axis as well
as the direction of average swimming translation. Frequency
dependent rotational axes have also been observed and
modeled for magnetically actuated swimmers and gyroscopes
both in bulk fluids and near surfaces [26,43,51–53]. Together,
these considerations make qualitative predictions that can be
checked experimentally.

First, no swimming results if the torque is perpendicular to
one of the planes of mirror symmetry (i.e., along e2 and e3) or
along e1, in which case the rotational axis is also along e1, e2, or
e3. In our experiments we indeed observe that the swimmers’
rotation axes change as we change the rotation frequency
[representative result in Fig. 3(a)] and that the swimmers only
swim when they rotate around an axis which is not e1, e2,
or e3.

Second, examination of Eq. (2) shows that constant rotation
and field directions satisfy Eq. (2) if the rotation frequency and
magnetic field strength are increased proportionally. In that
case, Eq. (3) implies the swimming speed increases linearly
with the frequency. This linear relationship was observed
experimentally [Fig. 3(b)]. We tracked seven different swim-
mers while the frequency and magnetic field strength were
increased proportionally [Fig. 3(b)]. During the experiments,
the swimmers were all controlled to swim in the positive
x direction. For swimmers 1–7, the velocity-frequency data
had linear fits through the origin with R2 ranging from
0.8567–0.99894 (Table I). The linear relation was confirmed
for a variety of frequency-to-magnetic field strength ratios
(Table I). Since our fabrication process results in random
geometries, each swimmer has a different geometry and hence
a different swimming speed. Nonetheless, all demonstrate the
linear relationship predicted by our theory.

Third, if the frequency is increased while the magnetic field
strength is held constant, the swimmer body-fixed rotation axis
changes, leading to a complicated nonlinear dependence of
swimming speed on frequency. A Supplemental video shows
this behavior for one swimmer [42]. In Fig. 3(c), we show
the swimming speed for six microswimmers as a function
of frequency while magnetic field strength is held constant.
In contrast to Fig. 3(b), the relationship between swimming
speed and frequency is nonlinear and markedly nonmonotonic.
Note that our analysis assumed a permanent dipole, which
approximates the magnetic moment of a soft ferromagnet
under saturating fields when the direction of the magnetic
field is fixed relative to the swimmer body. In the experimental
case, the direction of the field changes as the rotation axis
changes. Therefore some of the nonlinearity in Fig. 3(b) results

from changes in the moment as the rotation axis changes under
frequency. However, the changes in rotation axis play a key role
in driving the nonlinearity in the context of our analysis, as can
be seen from the behavior of the swimmer shown in Fig. 3(a)
[corresponding to swimmer 6 in Fig. 3(c)]. For frequencies less
than or equal to 2 Hz, the swimmer rotates near axis e1, and
accordingly the swimming velocities are small. Between 3 Hz
and 5 Hz, the swimmer rotates around non-principal axes, and
there is appreciable propulsion. At 6 Hz, the swimmer rotates
near axis e2, and the swimming velocity is small again. Above
7 Hz, the swimmer does not rotate steadily in synchrony with
the magnetic field, hence 7 Hz is the step-out frequency.

V. DISCUSSION

Previous work on robotic microswimmers focused on
flexible or chiral structures to generate propulsion; here, our
achiral microswimmers have shown that neither is neces-
sary. Our analysis of the achiral microswimmer provides a
framework to describe the coupled rotational and translational
motion of magnetically rotated microswimmers of arbitrary
geometries, as well as the minimal criteria for propulsion of
rigid bodies under external torque. Applying this framework to
design artificial microswimmers without chirality may lead to
simpler fabrication methods than currently used for helical
or flexible microswimmers and nanoswimmers, advancing
their development for numerous applications. Although the
particular swimmers demonstrated here are not faster than
previously fabricated microrobots, our work expands the space
of geometries to be considered for optimization of swimming
performance, thus opening possibilities for more effective
propulsion as well.
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APPENDIX A: MAGNETIC FIELD PRODUCED BY
APPROXIMATE HELMHOLTZ COILS

The approximate Helmholtz coils in this study are arranged
in a slightly different configuration than that of a normal
Helmholtz coil. Conventionally, the distance between two coils
of the same size is the radius of the coils, which creates a
near-constant magnetic field in the central region between the
coils. In this study, the distance between each pair of coils
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FIG. 4. Modeled magnetic field. Density plot of magnetic field
in xy plane created by the coil system modeled using COMSOL

MULTIPHYSICS. The small box at the center shows the area where
the magnetic field is near uniform (<2% variation).

is equal to the outer diameter of the coils plus the thickness
for the coil, which allows a cubelike configuration for the 3D
coil system and fits within the geometrical constraints of the
microscope while maintaining the desired characteristics of
the Helmholtz configuration. In order to validate the magnetic
field strength as well as the field profile, a finite element method
was used to model the coil system in COMSOL MULTIPHYSICS.
The finite element model simulated the magnetic field using
two pairs of coils producing a magnetic field with x and
y components, generating a static magnetic field in the xy

plane. The approximate Helmholtz coil system produces a
near-constant magnetic field at the center region of the coil
system within which the magnetic flux has less than 2%
variation; this region is indicated in Fig. 4 by the red box
marking an area approximately 2 mm by 2 mm. The magnetic
field strength (mT), rotational direction of the magnetic field,
and rotational frequency (Hz) of the field generated by the coils
are controlled through LABVIEW. The simulation indicates a
field strength of 5.06 mT when a current of 1 A passes through
the coils, which matches the experimentally measured value
of approximately 5 mT. According to the Biot-Savart law,
the field strength scales linearly with the applied current; this
is also validated with the simulated model and experimental
measurements.

APPENDIX B: EXPLICIT CALCULATION
OF MOBILITY MATRIX

To verify the results for the symmetry analysis of the
submatrix C of the mobility matrix, we numerically calculate
the mobility matrix for rigid bodies composed of three beads
by using the method of regularized Stokeslets [47,49,50].
The surface discretization used 717 regularized Stokeslets
[Fig. 5(a)]. To find the mobility matrix, we calculate the force
and torque on the swimmer for prescribed rigid-body trans-
lations in each of the cartesian directions and for prescribed
rigid-body rotations along each of the cartesian directions.
This yields the resistance matrix, which is the inverse of the
mobility matrix.

FIG. 5. (Color online) (a) Schematic of discretized surface of the
swimmer. Each of the 717 points represents a regularized Stokeslet on
the surface of the swimmer. (b) Angular reorientation of the swimmer
during the reorientation test (solid blue line), along with simulated
angular reorientation for different magnitudes of the magnetic dipole
(green dotted, red dashed, turquoise dash-dotted lines). The best fit
corresponds to a moment of 4.05 × 10−15 J/T.

We calculate C for two cases. First, we consider the fully
symmetric case with three beads of radius 4.40 μm, with
centroids of the beads located 8.80 μm apart, which has two
perpendicular planes of mirror symmetry. We verified that
when the origin is taken to be the center of reaction, the
form agrees with that of the symmetry analysis [Eq. (4)] up to
machine precision.

Second, because irregularities during fabrication can pro-
duce less symmetric three-bead swimmers, we also calculate
C for three beads of different sizes or with different lengths
between their centroids, which produces structures with only
a single plane of mirror symmetry, the plane containing the
centroid of the three beads. In that case, the symmetry analysis
of Happel and Brenner [46] implies that C takes the form

C =

⎛
⎜⎝

0 0 C13

0 0 C23

C31 C32 0

⎞
⎟⎠ . (B1)

Again, the numerically calculated mobility matrices for these
less symmetric geometries, including geometries deduced
from experimental image analysis, have the form predicted
by symmetry analysis.
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APPENDIX C: CALCULATED SWIMMING SPEEDS

We used the mobility matrices to calculate the swimming
speed for a 10.12 mT magnetic field rotating at 4 Hz
by solving Eqs. (2) and (3) numerically. The calculation
requires a measurement of the magnetic dipole. The random
fabrication process means that each swimmer has a different
dipole magnitude and direction, but to obtain an estimate of
swimming speeds, we estimated the moment via the response
of a single swimmer to the reorientation experiment used
to test rigidity [Fig. 1(b)]. The magnetic field strength in

this experiment was 2.53 mT. The direction of the magnetic
moment was determined from the initial and final orientations
of the swimmer. The magnitude of the moment was obtained by
modeling the rotation dynamics using Eq. (2) and the mobility
matrix calculated above. We found that a moment of 4.05 ×
10−15 J/T provided the best fit to the reorientation dynamics, as
measured by the sum of squared residuals [Fig. 5(b)]. For this
magnitude of dipole moment in a variety of directions, and
a variety of three-bead swimmer geometries, we found that
swimming speeds had typical orders of magnitude of 1 μm/s.
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et al., Appl. Phys. Lett. 97, 173702 (2010).

[12] M. Leoni, J. Kotar, B. Bassetti, P. Cicuta, and M. C.
Lagomarsino, Soft Matter 5, 472 (2009).

[13] N. Mori, K. Kuribayashi, and S. Takeuchi, Appl. Phys. Lett. 96,
083701 (2010).

[14] R. F. Ismagilov, A. Schwartz, N. Bowden, and G. M. Whitesides,
Angew. Chem. 114, 674 (2002).

[15] W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St.
Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi,
J. Am. Chem. Soc. 126, 13424 (2004).

[16] Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R.
Kline, A. Sen, and T. E. Mallouk, Langmuir 22, 10451 (2006).

[17] W. Gao, M. D’Agostino, V. Garcia-Gradilla, J. Orozco, and
J. Wang, Small 9, 467 (2013).

[18] J. Orozco, V. Garcı́a-Gradilla, M. DAgostino, W. Gao, A. Corte,
and J. Wang, ACS Nano 7, 818 (2013).

[19] K. M. Manesh, M. Cardona, R. Yuan, M. Clark, D. Ka-
gan, S. Balasubramanian, and J. Wang, ACS Nano 4, 1799
(2010).

[20] A. A. Solovev, Y. Mei, E. Bermúdez Ureña, G. Huang, and
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