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We analyze the influence of phonons on the dx2−y2-pairing instability in the Hubbard model on the two-
dimensional square lattice at weak to moderate interaction U, using a functional renormalization group scheme
with frequency-dependent interaction vertices. As measured by the pairing scale, the B1g buckling mode
enhances the pairing, while other phonon modes decrease the pairing. When various phonon modes are
included together, the net effect on the scale is small. However, in situations where d-wave superconductivity
and other tendencies, e.g., antiferromagnetism, are closely competing, the combined effect of different phonons
may be able to tip the balance towards pairing.
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I. INTRODUCTION

The two-dimensional Hubbard model is one of the most-
studied models in context with high-temperature supercon-
ductivity in the layered cuprates. An important question is
whether electronic interactions of the Hubbard model alone
can provide a sufficient pairing strength explaining the high
critical temperatures and large energy gaps observed experi-
mentally. Furthermore, in particular for large values of the
Hubbard interactions, there is a strong competition between
various ordered states such that one may want to have an
argument why superconductivity prevails in a large param-
eter region for most of the materials. Although the lattice
degrees of freedom were thought to be irrelevant for the
high-Tc problem for a long time,1 and phononic signatures in
the electronic properties are still debated intensively,2 an ad-
ditional phononic contribution to the pairing seems to be a
natural way to enhance the superconducting pairing against
other competing electronic correlations.

A theoretical analysis of this question in the Hubbard
model at large values of the onsite interaction is difficult. The
impact of phonons on the pairing interaction has been ad-
dressed in various ways with partially contradicting results
for a larger interaction.3–6 Here we analyze the problem at
weak to moderate values of the coupling constant. This al-
lows us to obtain some qualitative insights using the func-
tional renormalization group �fRG�, which is known to treat
competing interactions such as electronic correlations and
phonons on equal footing. Previously, the fRG has been used
to classify the leading instabilities of the weakly coupled
Hubbard model without phonons.7–10 There, for band fillings
when the Fermi surface �FS� is not nested, a dx2−y2-wave
superconducting instability is obtained in a large parameter
window. The main driving force for these superconducting
tendencies is antiferromagnetic �AF� spin fluctuations. Here
we add phonon-mediated interactions to the bare Hamil-
tonian. We analyze the changes in the critical energy scale
for the Cooper instability and in the competition with other
states.

II. METHOD

The fRG scheme we use is an approximation to an exact
flow equation for the one-particle irreducible vertex func-
tions of a many-fermion system.11 The quadratic part of the
fermionic action is supplemented with a cutoff function,
which restricts the functional integral over the fermions to
the modes with dispersion ���k�����. For the two-
dimensional �2D� square lattice we use a t− t� parametriza-
tion,

��k�� = − 2t�cos kx + cos ky� − 4t� cos kx cos ky − � , �1�

with nearest- and next-nearest-neighbor hoppings t and t�
and chemical potential �. The fRG flow is generated by low-
ering the RG scale � from an initial value �0� bandwidth.
Thereby momentum shells with energy distance � to the FS
are integrated out. In the approximation we use, the change
of the interaction vertex is given by one-loop particle-hole
�including vertex corrections and screening� and particle-
particle pairs where one intermediate particle is at the RG
scale � while the second one has ���k�����. Higher-loop
contributions are generated by the integration of the RG flow.
The flow of the self energy will be analyzed in a later pub-
lication �see also Ref. 12�, and as in previous studies its
feedback on the flow of the interaction vertex is neglected.

For spin-rotationally invariant situations, the interaction
vertex can be expressed9 by a coupling function
V��k1 ,k2 ,k3� depending on the generalized wave vectors of
two incoming �k1 and k2� and one outgoing �k3� particle with
wave vector, Matsubara frequencies and spin projection
ki= �k�i ,�i ,si�. Note that in general V��k1 ,k2 ,k3� does not
possess any other symmetries than those of the underlying
lattice. The dependence of this function on three wave vec-
tors is discretized in the so-called N-patch scheme, intro-
duced in this context by Zanchi and Schulz.7 This scheme
takes advantage of the fact that for standard Fermi-liquid
instabilities in the Hubbard model without phonons, the lead-
ing flow is rendered correctly by projecting the wave vectors
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k�1, k�2, and k�3 on the FS and keeping the variation of
V��k�1

F ,k�2
F ,k�3

F , . . . � when the k�i
F are varied around the FS.

Hence, one calculates V��k�1 ,k�2 ,k�3 , . . . � for k�1 ,k�2 ,k�3 on the
FS and treats it as piecewise constant when k�1, k�2, and k�3
move within elongated patches stretching from the origin of
the Brillouin zone �BZ� to the �±� , ±�� points. Note that
other discretizations with more radial dependence of the cou-
pling function in the direction away from the Fermi surface
have been tried out in the Hubbard model, with qualitatively
similar results.13 In the present case with phonon-mediated
interactions, the initial fermionic interactions do depend on
the distance to the Fermi surface. This dependence is not
properly treated in the patching scheme used for the results
below, as keeping both radial and frequency dependence
would make the numerical treatment extremely slow. We
have however checked the main qualitative trends in flows
with radial dependence instead of frequency dependence, us-
ing the RG schemes from Ref. 13. We also add that this
discretization scheme violates the equality V��k�1 ,k�2 ,k�3�
=V��k�2 ,k�1 ,k�4� as in one case k�3 is projected on the FS and k�4

may remain off the FS, while in the other case k�4 is pro-
jected. This problem is reduced in the numerical implemen-
tation by averaging over the V��k�1

F ,k�2
F ,k�3

F� and V��k�2
F ,k�1

F ,k�4
F�

in the one-loop diagrams in each RG step.
In order to treat retarded interactions we have to go be-

yond the previous works, which neglected the frequency
dependence.14 We divide the Matsubara frequency axis into
M sections. The aim is to approximate the decay of a phonon
propagator above a characteristic frequency �0. Below we
show results for 32 BZ patches and M =10. The minimal
frequency spacing is �0=0.2t. The frequencies for which the
vertices are computed range between ±5�0. The frequencies
of the dispersionless phonons considered here are taken to be
less than �0. We have checked that other reasonable choices
do not change our qualitative findings.

The RG flow is started at an initial scale �0 with initial
interaction V��k�1 ,k�2 ,k�3 ,�1 ,�2 ,�3�. What is typically en-
countered at low T is a flow to strong coupling, where for a
certain flow parameter �c one or several components of
V��k�1 ,k�2 ,k�3 ,�1 ,�2 ,�3� become large. At this point the ap-
proximations break down, and the flow has to be stopped.
Physical information about the low-energy state is obtained
by analyzing which coupling functions and susceptibilities
grow most strongly. For standard Cooper instabilities, the
critical scale �c at T=0 is proportional to the critical tem-
perature Tc.

For pure Hubbard interactions, the initial vertex at scale
�0 is V�0

U �k1 ,k2 ,k3�=U. For phonon-mediated interactions,
we add a retarded part, leading to

V�0
�k1,k2,k3� = U − �

i

gi�k�1,k�3�gi�k�2,k�4��i,0

��1 − �3�2 + �0,i
2 . �2�

Here, gi�k�1 ,k�3� is the electron-phonon interaction for an
�Einstein� phonon mode i with frequency �0

i scattering an

electron from k1 to k3. k�4 is fixed by wave-vector conserva-
tion on the lattice. Obviously, if the product of the g’s in the
numerator does not produce sign changes, the main effect of
the phonon part is to reduce the effective onsite interaction
U. The coupling strength of the mode can be measured by
the FS average,

	i = 2�
k�,k�


��k��
��k����gi�k�,k����2���0,i Vol�
k�


��k��� .

�3�

Motivated by current issues in the high-Tc problem, we ana-
lyze various different phonon modes, idealized as dispersion-
less. First we consider a Holstein phonon with a
k�-independent coupling gHolstein�k� ,k���=g. As a next step we
analyze a coupling, which only depends on the transferred
wave vector q� =k� −k�,

�gbuck�q���2 = gbuck
2 	cos2 qx

2
+ cos2 qy

2

 . �4�

A coupling of this type was used by Bulut and Scalapino15 in
their analysis of the out-of-plane motion of the planar oxy-
gens �buckling mode� in the language of a one-band Hubbard
model. They and various other authors16–18 pointed out that
the suppression of this coupling for large momentum trans-
fers q��� ,�� leads to an attractive d-wave Cooper pairing
potential. The same mode was also considered using multi-
band models involving the planar or full copper-oxide
structure.18,19 Then the out-of-phase c-axis motion of the pla-
nar oxygens on x- and y-bonds, known as the B1g-mode,
gives rise to a coupling with a sign change under 90° rota-
tions,

gB1g�k�,k��� = gB1g���1 + cos kx��1 + cos kx��

− ��1 + cos ky��1 + cos ky�� . �5�

In optimally doped cuprates this mode shows up at
�36 meV and its coupling strength is taken as 	B1g=0.23.19

In-plane breathing modes have also been observed and dis-
cussed in the cuprates. Here the planar oxygen atoms next to
a copper site move towards or away from the copper atom.
One obtains a coupling15 �again with q� =k� −k��

�gbreathe�q���2 = gbreathe
2 	sin2 qx

2
+ sin2 qy

2

 . �6�

The frequency for this mode in optimally doped samples is
taken as 70 meV, and the FS average of the coupling
strength is quoted as 	breathe=0.02.19 Finally there is a c-axes
vibration of the apex oxygen above or below the copper with
a coupling

gapex�k�,k��� = gapex�cos kx − cos ky��cos kx� − cos ky�� . �7�

The bare gapex�k� ,k��� does not support an attractive d-wave
pairing component, but it has been argued20 that screening
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can generate a d-wave attraction. The frequency of this mode
in the cuprates is roughly 60 meV, and the coupling strength
is discussed to be as high as 	apex=0.5 and higher.20 Below
we use the conversion 50 meV=0.1t.

III. FLOW IN THE HUBBARD MODEL WITHOUT
PHONONS

First we describe the flow without phonons. We choose a
curved FS near the van Hove points with n=0.83 particles
per site. Note that the doping dependence at weak coupling is
quite different from the behavior at large U, so no strong
conclusions about the doping dependence in the cuprates can
be drawn. There are two main effects of the interaction: ten-
dencies towards AF spin-density-wave �SDW� and towards
d-wave pairing. The FS with the 32 discretization points, and
the flows of d-wave pairing and AF-SDW susceptibility �dSC
and �AF are shown in Fig. 1. As in previous studies without
frequency dependence, for these parameters �dSC grows most
strongly toward low scales, but one clearly observes tight
competition with antiferromagnetism. Therefore, for the situ-
ation with the FS near the saddle points, alternative interpre-
tations of this multichannel instability have been
considered.9 Reducing U or the nesting makes the d-wave
pairing more dominant. In the right panel of Fig. 1 we dis-
play the frequency dependence of �dSC. It shows the buildup
of a zero-frequency peak when the instability is approached
at low scales. We also plot the FS-averaged d-wave pairing
interaction with zero total incoming frequency versus the
frequency transfer. The peak is quite broad, signaling a large
pairing “Debye” energy scale �D� t. It roughly tracks the
frequency dependence of �AF at wave vector �� ,��. A simi-
lar behavior has been found in dynamical cluster approxima-
tion �DCA� calculations.23

IV. CRITCAL SCALE CHANGES DUE TO PHONONS

Now we include phonon modes and monitor the changes
of the critical scales for the flow to strong coupling, �c. For

the d-wave pairing dominated instability of the Fermi surface
described above, the results are shown in Fig. 2�a� as a func-
tion of the dimensionless coupling strengths 	 for the various
modes included separately at U=3t. The phonon-mediated
interaction brings in two effects that can compete. First, a
momentum-dependent structure can develop, which can gen-
erate a d-wave component in the pair scattering, and enhance
d-wave pairing. Second, the attractive part of the retarded
interaction reduces the effective onsite repulsion,22 which
can disfavor spin-fluctuation-induced pairing. The competi-
tion between these two trends can be illustrated by the Hol-
stein coupling.

At least for U�6t it is known that the Holstein coupling
g�k� ,k��� is suppressed by the electronic correlations.3,4 The
suppression is strongest at large k� −k����� ,��. The fRG for
a Holstein mode with frequency 50 meV reproduces this
trend.21 In principle, this generates a d-wave component in
the pair scattering and �c for the d-wave pairing instability
should increase by adding the Holstein phonon. However,
the fRG finds a reduction of �c. The reason is the suppres-
sion of the initial Hubbard interaction by the Holstein pho-
non, which outweighs the additional d-wave attraction.

Next we consider the buckling phonon �4� with frequency
50 meV. Now, already the initial phonon-mediated interac-
tion is attractive for d-wave pairing, as the scattering with
k� −k����� ,�� is more repulsive than for k� −k���0. But
again, the reduction of the effective initial repulsion is too
strong, and the net �c is lower than for pure electronic inter-
actions. �c vs 	 behaves similarly to the Holstein case and is
not shown in Fig. 2. We conclude that it is not justified to
simply add phonon-mediated pairing interactions on top of
unchanged spin-fluctuation-induced interactions in a BCS
gap equation. The interaction between these two channels
needs to be considered. Similar trends are found for breath-
ing and the apex oxygen modes. For stronger coupling to the
breathing mode, 	breathe�0.5, the d-wave pairing instability
gives way to an s-charge-density-wave instability with
modulation wave vector �� ,��. The only phonon we studied
with a positive effect on �c for d-wave pairing is the B1g

FIG. 1. �Color online�. �a� RG flow of the susceptibilities
�dSC��� �thick solid �thick dashed� line for �=0 ��=0.5t�,
�AF�q� ,�=0� at q� = �� ,�� �thin dashed line� and �dCDW�q� ,�=0� at
small q �dashed-dotted� for t�=−0.25t, U=2.5t, and �=−0.94t with
32 FS points, T=0.01t. The marks on the � axis denote where
max�V��k1 ,k2 ,k3�� reaches 5t and 10t. �b� �dSC��� vs frequency �
at the scale where max�V��k1 ,k2 ,k3��=32t �thick solid line�, 10t and
5t �dashed lines�. Thin solid line: rescaled �AF��� at
max�V��k1 ,k2 ,k3��=32t. Open circles: FS-averaged d-wave pair
scattering V�

dSC�� ,−� ,�m� vs transferred frequency � �with outgo-
ing frequency �m= ±0.1t�.

FIG. 2. �Color online�. �a� Critical scales �c �largest couplings
exceed 32t� for the d-wave pairing instability vs electron-phonon
coupling 	, for T=0.01t, �=−0.95t, t�=−t /4, and U=3t. Holstein
mode: diamonds; breathing mode: squares; B1g mode �Eq. �5�:
crosses; and apical mode: circles. �b� Critical scales �c for the
d-wave instability vs U. The dashed line is without phonons.
Crosses �squares� for only the B1g �apical� mode included, triangles
for the breathing, B1g and apical mode together. All data
for T=0.01t, �=−0.95t, t�=−t /4 with 	B1g=0.23, 	apex=0.5,
	breathe=0.02.
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buckling mode. Since gB1g�k� ,k��� vanishes for k� −k����� ,��,
it supports d-wave pairing while it does not suppress the
on-site U due to its d-wave form factor. In fact, the fRG
energy scale for an AF instability at perfect nesting and half
filling is enhanced by the B1g phonon. In addition, the bare
gB1g gets enhanced by the Hubbard interactions8,24 during the
flow. Hence the single B1g mode added to the Hubbard model
can increase the energy scale for d-wave pairing consider-
ably. For n=0.83, U=2.5t, and 	B1g

=0.23,19 the increase is
as high as 55%; for U=3t only 16%. With breathing, B1g and
apical mode included together �Fig. 2�b�, with 	s and fre-
quencies cited after Eq. �5�, �c is still slightly increased
compared to the case without phonons. However, such a
small increase may be affected by details or uncertainty
about the 	s for different phonons.

V. COMPETITION BETWEEN PAIRING AND
ANTIFERROMAGNETISM

Next we analyze the competition of the d-wave supercon-
ductor with antiferromagnetism. As shown in Fig. 1�a�, the
pairing susceptibility �dSC overtakes the growth of the AF
spin susceptibility �AF only very close to the instability.
When the B1g phonon is included �Fig. 3�a�, the critical
scale �c grows. Also �AF is increased at a given scale �, but
�dSC dominates more clearly. This means that the B1g phonon
is indeed beneficial for d-wave-pairing correlations. In addi-
tion, the B1g phonon increases the d-wave charge-density-
wave susceptibility �dCDW�q�� at small wave vectors,24 as is
found from comparing Figs. 1 and 3. This could lead to an
additional breaking of the fourfold symmetry of the FS.8,26

This splitting of the van Hove density of states would not
suppress the pairing instability altogether, but could reduce
�c by pushing the density of states away from the FS.

If we now add the breathing and the apical mode �Fig.
3�b�, �AF and �c get reduced again. However, �dSC is less
affected by the weak breathing mode and the apical mode,
which barely changes the d-wave pairing. Hence for
U=2.5t, compared to the case without phonons or with the
B1g phonon alone, �dSC dominates even more clearly. Similar
trends are seen at U=3t. Hence, at least at weak coupling,
there is the possibility to enhance d-wave pairing in the en-

ergy scale and with respect to competing instabilities by cou-
pling to the right mix of phonons.

VI. DISCUSSION AND CONCLUSIONS

The results in the last section demonstrate that a mix of
different phonon modes can enhance d-wave pairing in the
competition with other instabilities such as antiferromagnetic
spin-density-wave ordering. Although we have only de-
scribed the results for one specific Fermi surface with a nar-
row competition between pairing and antiferromagnetism,
the fRG flow and also the phononic effects on this competi-
tion change only gradually when the band filling or the hop-
ping parameters are varied. Note that in such situations, rela-
tively small changes in the flow can lead to rather large shifts
of phase boundaries.

Discussing possible caveats for our analysis, we note that
in the RG flow, self-energy corrections have been neglected.
It is rather clear that the reduction of the quasiparticle weight
at small energies could potentially reduce the pairing
strength even further.16 DCA results25 for U=8t and Holstein
phonons are consistent with this. The fRG results give an
upper bound for the energy scale for d-wave pairing. Note
that for large U near half filling, the coupling to Holstein
phonons may actually increase the AF susceptibility25 con-
trary to our weak-coupling results. The reason is the forma-
tion of a heavy polaronic quasiparticle, which is more effec-
tive in an already correlation-narrowed band at large U.
Nevertheless the decrease of the pairing scale seems a com-
mon feature at weak and strong coupling.

In conclusion, we have analyzed the influence of various
phonon modes on the d-wave-pairing instability in the 2D
Hubbard model at weak to moderate coupling. Most phonons
studied reduce the energy scale for the instability of the
Fermi-liquid state by reducing the effective on-site repulsion.
This effect outweighs possible enhancements of the
d-wave-pairing scale due to the wave-vector dependence of
the electron-phonon coupling. Spin-fluctuation- and phonon-
mediated-pairing interactions are not additive. The only
mode studied here, which enhances the energy scale for the
d-wave instability is the B1g buckling mode. Due to its
d-wave-type wave-vector dependence it does not suppress
the local on-site repulsion and therefore does not harm the
spin-fluctuation mechanism. For moderate U�2.5t and av-
erage coupling 	B1g=0.23, the increase of the pairing energy
scale is more than 50%. This increase is reduced when other
phonon modes are included. Notably, for the parameters used
here, where without phonons the d-wave pairing and AFM
were in very tight competition, the combined effect of three
phonons is able to establish the dominance of d-wave pairing
relative to other instabilities.
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FIG. 3. �Color online�. RG flow of �dSC �solid line�,
�AF �dashed�, and �dCDW�q�� at small q �dashed-dotted� for �=0,
U=2.5t, t�=−0.25t, �=−0.94t. �a� With only the B1g-mode,
	B1g=0.23, �b� with also apical and breathing modes
included, 	B1g=0.23, 	apex=0.5, 	breathe=0.02, and frequencies
�B1g=36 meV, �apex=60 meV, �breathe=70 meV �using 0.2t
=100 meV�.
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