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Renormalization-group analysis of coupled superconducting order and stripe order
in 1+1 dimensions
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In this paper, we perform a renormalization-group analysis in the1)-dimensional version of a previ-
ously proposed effective-field theory describifguantum fluctuating stripe and superconductor orders. We
find four possible phases corresponding to stripe order/disorder combined with superconducting order/disorder.
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I. INTRODUCTION density increases. Motivated by this, Begonstructed the

following Lagrangian density:

In La,_,Sr,CuQ, compounds, there are three well-
established ordering tendencies: antiferromagnetism, super-
conductivity, and charge/spin striptSome experiments in- 2 2 — — .
dicate that stripes and superconductivity can even coexist in" — m‘]ﬁ K AuTIuP0du ot Ax(podxpo—i91dy)
these compounds.Furthermore, neutron-scattering experi- M_ o
ments by Lakeet al® show that a moderate magnetic field +0i(podipo—102dy). 1
can have large effects on the incommensurate magnetic fluc-
tuations. This is widely taken as evidence suggesting the .
stabilization of stripes by the magnetic field. In the abovego=€'’s is the U1) phase factor of the super-

In mean-field theory, when two order parameters are irfonducting order parameter, apg=e€'» is the phase factor
close competition it is possible for them to coexist in a cer-of the stripe order. That i39p=(27-r/)\)§<- u(x,t), with A the
tain region of the phase diagrdhin such a coexistence re- stripe period andi(x,t) the displacement field of the stripe
gion, quantum fluctuations of both order parameters domierder.J, andq, are auxiliary fields coupling to the super-
nate the low-energy physics. In a recent paper, °Leeconducting and stripe phases, respectively. These auxiliary
examined such a situation. The paper described how thields have the physical interpretation of energy-momentum
Goldstone modes of stripe and superconducting orders arzurrents.(In this paper, greek indices run ovejt, and re-
their respective topological defects interact. peated indices are summegd.

We stress that the theory presented in Ref. 5 differs in  Without the coupling ¢, ,=0), integrating oudl,, andq,,
important ways from the conventional self-dual charge-produces the field theory for two independentllJGold-
density wave/superconductivity action in one dimension. Instone modes and their respective vortices. The effect of the
deed, in one dimension the displacement field of the chargezoupling is to favor stripe displacememntin the presence of
density wave is conjugate to the phase of thelocal charge imbalancé;.
superconducting order. As a result the charge-density wave To analyze Eq(1), Lee used a duality transformation plus
and the superconducting orders are mutually excluiee,  an educated guess about the four possible quantum phases
whenever superconducting susceptibility strongly divergescorresponding to combinations of stripe and superconducting
the charge-density wave susceptibility does not and vicerder/disorder. In this paper, we study a one-dimensional ver-
versa. In contrast, in the theory of Ref. 5 there exists asion of Eq.(1), applying the well-developed techniques of
generic region in the phase diagram where both orders existiuality transformation and the renormalization-group to de-

In this paper, we examine in detail a one-dimensional anatermine the possible phases in a more unbiased fashion. We
log of the model studied in Ref. 5. The motivation for this is find that all four combinations of stripe order/disorder and
that well-developed calculational methodsuch as the superconducting order/disorder are stable phases. This sup-
renormalization-group can be used to analyze the phaseports the conjectured phase structure in Ref. 5.
structure of the model. This can be used to check the correct- In the following, we use a real-space renormalization pro-
ness of the asserted phase structure in Ref. 5. cedure similar to that used by Kosterlitz and Thouless to treat

Now we describe the theory proposed by Pe@ince the the phase transition of the two-dimensional Coulombfas.
stripe order is a one-dimensional charge-density wave, ittn Sec. Il, we derive the vortex actiofthe vortex of the
Goldstone modéi.e., stripe displacemenis aU(1) scala?  stripe order parameter is the dislocatiom Sec. Ill we ob-
The superconducting order, of course, also possesg¢dp  tain the renormalization-group recursion relations for the
Goldstone mode. The important question is: how do theseoupling constants in that theory. As in the Kosterlitz-
two U(1) modes couple together? A hint of how this cou- Thouless theory, we make the small vortex fugacity approxi-
pling works comes from the experimental fact that the periodmation. We analyze the implications of these flows for phase
of incommensurate spin correlation decreases as the dopirggability in Sec. IV.
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II. DUALITY TRANSFORMATION TO TWO-SPECIES K2
COULOMB GAS £ —iGkyk,
Following the work of Joset al.” we first perform a du- L= E(N M)* x Kou , (D
ality transformation and write the theory in terms of vortex 2 det| ki M
degrees of freedom. ~iGkdk K —
Starting with Eq(1), we first separate the phasedy and pr
Po _into a topologically trivial part and a topologically non- K2 K2
trivial part: det= ( _M) ( — | +G%Kk3K?2 . (8)
) pu Kd;
Bo=e'"0¢, Equation (8) is the starting point of our renormalization-
group analysis. It describes a system of two interactarg
po=€"p. 2) isotropig Coulomb gases—the vortices of the superconduct-

ing order parameter and the dislocations of the stripe order

In the above,s, and &, are single valued, whiles and p parameter. Inspired by the work of Kosterlitz and Thouless,
contain configurations with nonzero windings. After integrat-We perform a real-space renormalization-group analysis of
ing over the topologically trivial phases;,&,), we obtain  Ed. (8) in the following.
two conservation laws,

Ill. RENORMALIZATION GROUP ANALYSIS

9du=0, Equation (8) is more complicated than the one species
Coulomb gas problem in two respect$) there are two spe-
d,d,=0. (3 cies of vortices and?2) the interactions are not rotationally

invariant (i.e., the interaction depends not only on the dis-
To explicitly fulfill these conservation laws, we writé, tance between vortices but also on th(_air relative orientation
=¢,,d,A andq,=e€,,d,x, wherey andA are scalar fields. In order to complete the renormalization-group program we
Substitution leads to have to characterize the interaction in terms of a discrete set
of coupling constants. One way of achieving this is to Fou-
rier transform the angular dependence of the vortex-vortex
2 - interaction. In momentum space each element of the interac-
(Oul)" €0y b3, 6 tion matrix is of the formG(k) =G(k, 6) =g()/k? (0 is the
_ angle made by and thek, axis). Therefore, we expand each
+ €,,0,XPd P+ 1919 X IxA +i1920x X T A. (4)  of these terms in a Fourier series, eg(f)==3,a,e'"?.
When transformed back into real space, our action then be-
In the above the index denotesx if w ist and vice versa. COMeS
Upon integrating by parts and identifying the vortex densi- 1
ties N=ie,,d,(pd,p) and M=ie,,d,(¢$d,¢), the La- S=3 f d?R,0d%R,N(R;)Gn(R;— Ry)N(R,)
grangian density becomes

L ! (9,x)%+ !
= X
N _
Kpu ZKW

+M(R1)Gn(R;—R2)M(Ry)

1 1 .
L=——(3,x)%+——(3,M)*+iAM+ixN +2M(R)iT'(R;—R2)N(Ry), 9
2Kopu 2K ou where
~i(g1+G2) Adidyx. (5) . or
— ing
The above equation can be written in momentum space as GN(R)_f (Zﬂ)z(n_zx an® ) K2 (10
k2 d?k * ) eik-R
—EiGK.k, GM(R)zf 2( > ane”‘@) o (11)
1 Ko x(K) (2m)? \n==e k
L=5(x(k)  A(k)*
2 k2 A(k) 2 o0 ik-R
iGkk, —~ F(R)zf d<k S o e (12
Kon m2\ne K
N(k)
+i(x(k) A(k))*<M(k))’ (g niheabove

a,=(—-1)"a*,
whereG=g;+0,. Integrating out they and A fields then -
produces an=(—1)"aZ,
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the ordered and disordered phases. In the ordered phase the
density of vortices renormalizes to zerg—0) at large
length scales, signifying the presence of a bound dipole
phase. In the disordered phase the density of vortices in-
creases Y increasep at large length scales, signifying the
existence of a vortex plasm@anbound dipolg phase.

The two-component vortex gas problem we are facing is
not so different. However, we have to keep track of all the
Fourier coefficients in Eqs(10)—(12) and examine how
they renormalize. Interestingly, even in the presence of these
anisotropic interactions, the Kosterlitz-Thouless renormal-
ization-group program closes.

All the technical details are given in the Appendix. Here
FIG. 1. Renormalization-group flow for the Kosterlitz-Thouless we just note the fOHOW'ng, p0|nt..S|n(.:e the “Coulomb
transition. The fixed points are at tlye=0 axis. In our model this charge” of the superconducting vortices is not related to the
corresponds to only, a, nonzero. Coulomb charge of the stripe vortices, only intraspecies di-

poles are possible. This implies that the positions of vortices
belonging to different species do not have to obey the con-
Co=(—1)"c* . (13) straint that the minimum distanceiis. To lowest order iry

the resulting renormalization-group equations are given by
to ensure that the interaction functions are real. We stress that

N

8n a,

because of the angular dependence of E§®—(12), Gy, dyn ag
Gun, andT' depend not only on the distan¢®;—R,| but ar N( T an)
also on the relative orientatiorR{—R,)/|R;—R,|. In gen-
eral, a, and «,, are nonzero only for even. The physical dy o
reason for this is indistinguishability of two charges of the —M:yM 2— —0),
same typdfor details, see the Appendixc,, can be nonzero dl 4m
for both odd and even. d
The limit where all thea,,, «,,, andc, are zero excem, a 2 2 mt 1
and a,, describes two decoupled isotropic two-dimensional ~ dl _Tr;n OnicemlYn&@m Vi (— D™ el
X-Y models in their Coulomb gas representations—the Ko-
sterlitz and Thouless problem. Before we attack @ as a da,
warm up, let us briefly review the Kosterlitz-Thouless results ar 172 5nyk+m[yf,|akam+ yﬁ( —1)™ecnl,
for the one-component system. In the renormalization-group kim
approach one integrates out one pair of tightly bound dipole q
(i.e., a dipole withr +dr.< size <r.) at a time. The Cn 2 2
renormalization-group proceeds iteratively by treatipgs a dr WKEJ:n Onct m( YN Yia @) Cm- (17)
running length scale. The two coupling constants in this case
are the vortex-vortex interaction strengty and vortex Note that the renormalization gf \y only depends on the

fugacityy=e™#, wherep is the core energy of vortices. In sotropic part of the couplinga, and a,). The renormaliza-
the limit of y<1, the renormalization-group equations & tion of an anisotropy coefficien{e.qg., a,) includes many
andy are given by terms. Each term is a quadratic functionagf, a, or c,. If

we set all coupling constants excegt and aq to zero we

d_y =y( 2_ o (14) recover the Kosterlitz-Thouless flow equatidfer two sepa-
dl 47|’ rate specigs It is easily verified that the condition for
) Gn,Gy, andT to be real[a,=(—1)"a*,, etc] is pre-

93 _ my?al (15  Served by these flow equations. Itis also clear from the form
dl 0 of these equations that these coefficients form a closed set

The above equations have the entire0 axis as fixed under renormalization.

points. However, depending on whettegy— 8 is positive/

negative, the fixed point is stable/unstable. The paint IV. PHASES OF THE TWO-SPECIES COULOMB GAS
=0,80=38 is a critical point. Near it, the flow trajectories

are given by Equation(17) predicts fixed points for,,=yNy=0 and

a,, a,, C, can be anything. As in the normal Kosterlitz-
2 4,2_ Thouless case, we interprgt=0 as the absence of unbound
ag—(4 =C. 16 . L -
o~ (4m)y (16 dipoles. From the first line of Eq.l7), yy=0 is linearly
Here C is a constant labeling each trajectory. This flow isstable whenay>87. For ay>8m, the renormalization-
shown in Fig. 1. Note that theC=0 separatrixy  group bringsyy to larger values. Similar statements hold for
=[1/(47)*](a,— 87) separates the basins of attraction for aq andy,,. This suggests the presence of four phases de-
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pending on whether the vortices &f or M species form d|c,|? ) 5 )

dipoles or unbind. - 27(YnaotYu ap)|co|?. (25
However, this is not quite enough for our purposes. What

we really need to know is whether all four phases can baJsing this in Eqs(22) and(23) then gives us

reached by varying the five parameters in Eg. Put in

another way, the physical system of E@) is in a five di- dao__ 20020 1012y 1 dlcyl? 26
mensional subspace of the infinite-dimensional space formed dr TYN(agF[c2[") 167 dl 26
by thea,, a,, andc,. We need to check which phases can

be reached by trajectories originating in the physical sub- deg 5. 2 ) d|c,|?

space, not just which phases exist for the infinite dimensional ar =~ ™mlao—le )~ - =g (27)
space.

In order to obtain a tractable problem, in the following we At this point, we examine closely the region of parameter
concentrate on the case in whig),,=K,, K,,=K, and  space around the critical point by making the change of vari-
GK, 4<1. WhenGK, , are small, it is easy to evaluate the ables
Fourier coefficients in Eq410)—(12) in powers ofGK,, ;.

If GK,, ,=0(e), we find that the leading contribution &, a=ap—8m,
an, C, IS O(e'”"z). For the specific form of interaction in
Eq. (7) it is simple to see that besides Eq$3) there are a=ag—8m,

additional constraints oa,, «,, andc,:
c=Cy—C.
a,=a,=0 unlessn=4m, o
In the aboveg is the fixed point ofc,. After some algebra,
c,=0 unlessn=4m+2. (18  and keeping terms to lowest orderanea, c, yy, andyy,

- _ the flow equations foa and « are
All of these conditions are preserved by the flow equations.

In terms of the original parameters in E{), the nonvanish- dyﬁl 1,
ing coefficients up to orde¢ are a1 2N (28)
— _ 2
ao—Kp(l K¢KPG /8), dyﬁn 1 )
. a2 @9
a0=K¢(1—K¢KpG /8), ™
: da? — a d|c,|?
c,=c*,=iGK K,/4. (19 e 2 2 27 ¢ T2
2 2 P di 2mynal(8m)“+|c|?] 60 dl (30
In the following, we truncate the space considered to only
these coefficients, which is correct to lowest ordee.irfFur- da? 5 R a d|cy|?
thermore, this restricts us to a five-dimensional space of pa- o = 2mYmal(8m) —lcl“]- s a - GV
rameters, which we can take to be independently determined
by the five parameters in EQ7). Finally, we can combine these equations to yield
In this case, the flow equatiori$7) become
d(@®=Xyy) dCy  a dlcyl?
W\ [, 20 (20 ai_ dl 8z dl (32
dl N 4o’
d(e®=Xyy) dCy  a dlcy?
D [, (21 a dl 87 dl 33
dl M Aqr)’ o
Here,X=(4m)*(1+|c|?/(87)?). To understand these equa-
da, 5 2 5 5 tions, note that the quantity in parentheses on the left-hand
ar — m(Ynao—Ywmlc2l?), (22)  side of each equation is precisely of the form of the contour
numbers for trajectories in the Kosterlitz-Thouless dase
da Eq. (16)], with the slope of the separatrix renormalized from
—Oz—w(yfﬂaé—yﬁlczlz), (23)  [U(4m)*] to 1X. In the absence of interactiong+0),
di these contour numbefsy andCy, are conserved, but in the
q presence of interactions, the renormalization-group pushes
ac; 5 2 the flow from one contour to the next. Furthermore, by Egs.
g = T(YNAdC2t Y aoCa)- (24) (32) and (25), for a>0 (i.e., ag>8) the contour number

Cy increases, while for<0 (i.e., ag<8w) Cy decreases.
First, by multiplying Eq.(24) by ¢} and then adding the Similarly for Cy, and a. The resulting flow is diagrammed
result to its complex conjugate, we obtain in Fig. 2.
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=K, and K,,=K, and weak coupling. In this case, the
phase diagram in thi , /K, plane is shown in Fig. 3.

Ynm)

O Q000 O
Wi
N SOl
O 000 0
nmmnn
N =of

V. SUMMARY

The main results of this paper are the interacting Coulomb
gas representation of the competing stripe and superconduct-
ing orders, Eq(8); and the renormalization-group flow, Eq.
(17). Analysis of these flow equations shows that the (1
+1)-dimensional version of the theory proposed in Ref. 5
supports stable phases corresponding to stripe order/
FIG. 2. Renormalization-group flow for weakly coupled super- superconducting order, stripe disorder/superconducting

conductingstripg) vortex gases, with contour numbe@slabeled.  order, stripe order/superconducting disorder, and stripe
The fixed points are at thg=0 axis. With nonzero coupling, the disorder/superconducting disorder.

flow moves from one contour to the next as indicated by the arrows.

It is clear that even in the presence of coupling for each gas, there

are still two phases correspondingyte-0 andy increasing.

8nm ao(ao)
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the separatricepyy<(ap—8m)/X andyy<(ag—8m)/X],
the flow leads to botlyy andyy, zero. In other words, there
is a stable phase with both types of vortices bound as di- APPENDIX: DETAILS OF
poles, corresponding to a stripe ordered/superconducting or- RENORMALIZATION-GROUP CALCULATION

dered phase. If the trajectory starts with,(-87)<0 and ) L
(ay—87) <0, the flow leads to botlyy andy,, increasing Here we present the details for the renormalization of the

and unbound dipoles of both species. Thus, there is a stripyStem described by Eqer) and (8), and parametrized in
disordered/superconducting disordered phase. Finally, in thEoUrier coefficients via Eqs(lO)—(lZ)% The details closely
mixed case, e.gyn<(a,—8m)/X and (xo—8m)<0, yy follow the procedure used by Joseal.” The basic idea is to

flows to zero buty,, increases. Thus there are phases withintroduce a small length scale cutaff, and then integrate
stripe  disorder/superconducting order and stripe order@ut configurations with pairs of the same type of charge that
superconducting disorder. arer.+dr. apart to find a new system with a longer mini-

We have seen that with wealg{+g,) all four phases Mum length scale. _ _ ,
corresponding to stripe order/superconducting order, stripe !N Our action, Eq(9), the fieldsN andM consist of point
disorder/superconducting order, stripe order/superconducting/'a'9es, €.9.N(r)==,N,é(r—r,). We will express the
disorder, and stripe disorder/superconducting disorder af@rms, Eq.(9), involving Gy andGy, as sums over pairs of
stable and can be realized in the system described by Lee‘ﬁgese charges. This results in t_he cancellation of all odd fou-
theory in(1+1) dimensiondEq. (1)]. We emphasize that we fi€r components oGy andGy, i.e.,a, and«, are zero for
have analyzed only the case with isotropic couplifgs, oddn. To_ see this, note _that in reexpressing the sum as a sum

over pairs, we combine terms likéN,NzGn(R,—Rp)
+NgzN,GN(Rg—R,). The twoGy's above differ by revers-

AKp ing the relative vectofi.e., 6— 6+ ). Since odd Fourier
. . components pick up a relative minus sign under this reversal,
stripe order stripe order they cancel each other, and only the even Fourier compo-
SC disorder SC order nents survive. On the other hand, since the terms With
K¢ describe the interaction between distinguishable vortices, we
’ cannot convert them into sums over pairs, and therefore
) . . . the Fourier coefficientx,, can be nonzero for both odd
stripe disorder | stripe disorder and evem.
SC disorder SC order As in the Kosterlitz-Thouless cas&y and G,, diverge

logarithmically at short length scales. In E@) this trans-

lates to divergence wheR;=R,. To remove this diver-
FIG. 3. Phase diagram for interacting stripe and superconduc@€nce, we must enforce charge neUtraBIIE/aNa:EaMa

ing order, for isotropic couplingk, andK, and weak interaction =0) and impose a small distance cutoff.” To account for

G. Only theK ,-K, plane is shown. Although different values®f  the microscopic physics lost in this procedure, we introduce

correspond to different long-range interactioBsdoes not control ~ core energies\y and Ay, for the vortices(charges After

the existence of stripe/superconducting order or disorder. this our action is written as
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5:(2) NaNBGN(Ra—RB)+(E) M oM sGu(R,—Rp)
a,B a,fB

+ 2 M NGIT(R,—Rp)+ 2 N2AG+ X M2Ay,,
a,B a 1%
(A1)

where (,B) denotes a sum over pairs andB denotes an
unrestricted sum over both and 8. At this point we make
the simplifying assumption thaky and A,, are very large,
S0 we may restrict ttN,,M ,= = 1. Introducing the fugaci-
ties yy=e 2N andyy,=e 2™, we can write the partition
function as a sum ovgrN dipoles andk M dipoles as

Z -
JZO kZoy yM |2k|2
dZX]_ d2X2j dzzl d222k -
-S
Xf 2 er' 2 T o (A2)
c c c c

S= > NuNgGu(Xa=Xg)+ 2 MM Gp(z,—2p)
(a,B) (a,B)

+ 2, M NgiT(Z,—Xg). (A3)
a,p

PHYSICAL REVIEW B 67, 104515 (2003

Su=—Gm(rm)
2j M
+2 MH(GM Ru+ > ) GM(RM—g—ZQ))
2k r r
+2 Na(il“ RM+7M—XQ —|F(RN—?N—XQ)),

(A6)

whereR signifies the center andthe separation of the di-
pole being integrated out. To obtain the above, we have used
the fact that the combinatorial factor fgr+1 pairs of
charges, one of which is a dipo[ee., (j+1)%/(j +1)!?],
is equal to the combinatorial factor ¢fpairs of charges
(i.e., 1f!2).

To proceed, rewrite EqSA5) and (A6) using identities
like (GN[Rn+ (rn/2) =X, ] = GNLRN = (N/2) =X, )
=rn- VR Gn(RN—X,). In Eq. (A4), these expressions enter
into exponentials, which we expand. The linear terms in this
expansion produce nothing interesting. To see this, note that
there are two types of these terms: those with a gradient, and
those without. The linear terms involving the gradient do not
contribute since their integral with respectrtas zero. The
linear terms involving no gradient] —Gy(ry) and
—Gpu(rw)] integrate to constants independeni,&, and the
N,, M., so they merely produce an overall constant multi-
plying the partition function.

Since the linear terms in the expansion of the exponentials
of Eq. (A4) are uninteresting, we look at the second-order

The first step in the real-space renormalization proceduréerms. There are three types of terms here: those involving

is to integrate over dipoles of sizg+dr.. Sinceyy,Ym

no gradients(e.g., GN\Gy); those involving one gradient

<1, we need only consider configurations with one dipole of(e.g., Gyr- VGy); and those involving two gradientg.g.,

either type. Furthermore, mixell-N dipoles are not inte-

r-VGyr-VGy). The first type of term, with no gradients,

grated out because doing so would violate overall chargéntegrates to a constant independent, & and theN,, M

neutrality for each species. This means that kheand N

S0 we ignore it.

charges are configured freely with respect to each other. The second type of term, with only one gradient, inte-
Writing out these single-dipole contributions, the partitiongrates to zero. For example, one such expression is

function gains an extra factor:

~ ~ d?R ret+dre d2r
o 9 T
r r

rC c C

dZRM retdre d 'm
+f ; f > Yue
r r r

C c C

“Su+0(y%)

(Ad)

|

'n . 'n
RN+?—ZQ>—|F(RN—?—ZQ>),

(A5)

Si=—Gn(ry)
2k
+ NQ(GN

'n N
RN+ ?_Xa) _GN< RN_?_XQ

2
+> MC,(iI“

EaNaG(rN)rN-VRNGN(RN—xa). However, in each term of
the sum, we can change integration variablesRfp=Ry
—Xg producinngaNaG(rN)rMVR&GN(R,’“). Charge neu-
trality then makes the sum oveér, zero.

The third type of term, with two gradients, does contrib-
ute to renormalization. A typical term of this type (issing
the Fourier expansion df)

1 dZRN r +drc d I’N 2
5 f 7 YA MM
c

c C

d’k 1 .
if —(E c e’

(2m)? k?

dk 1 .
iJ _(2 Cmelmt?

(2m)? k?

Xrn- Ve,

eik-(za—RN)]

ek (zg=Ry) |

er-VRN

Using ry~r.(cosp,sing) we can integrate ovar to obtain

104515-6



RENORMALIZATION-GROUP ANALYSIS OF COUPLED. .. PHYSICAL REVIEW B7, 104515 (2003

’ 2

12mr dl’c ZJ RNE f d’k dk ———(—ik)- (—IK)LECC e|n0+|m0 elkz+|k’ Zga~ i(k+k")-Ry
202 g (2m)? (2m)? K2p 2

mdr, f d%k 1
- = MaM _elk (24— 2p) cnC e|(n-%—m)9 ima

21 e yN;ﬁ B (2 )2 k2 2

dr d’k 1 .

-2 Cyﬁ J ( ) Eelk (Za 723)2 (2 5n|+mclcm(_l)m+l e’

After many calculations like this and some algebra, we ob- Thus, in the interaction terms only the zero-mode Fourier
tain a new partition function in the form of E¢A2) again, component has any mention af.. To complete the
except that the interaction functions have been redefined teenormalization-group program, we must write the partition
Gy Gy andT'’ via the new coefficients function in a form containing only the renormalized core size
r.=(1+dl)r.. After we do this, the partition function i&p

_ 2 2 1 to an overall constaint
aﬁ—an—ﬂkz ‘Sn,ker(yNakam"'yM(_:I-)mJr Cka)d|, n
,m

Z - 1 1 [ d’;  d?y
k ]
Z 2 yaK(L+dl)Hkr4 — f —

ar;:an_ﬂgq 5n,k+m(y§/|akam+ya(_1)m+1ckcm)d|v JIZ ki le r

, X | —--- exp—S')
Cn:Cn_W% 5n,k+m(yﬁak+y§/|ak)cmdl- (A7) I'éz I‘éz
_ 1 1
Heredl=drc/rc. _ xexp — s—agin(1+dh5 > NNg
At this point, it is useful to examine more closely the 21 2 47B
structure of the contributions to the interaction functions and
ur]derstand what sorts of int_eractions we are dealing with. To _ ia{)ln(1+dl E z MM,
this end, we evaluate a typical term 27
2 ik-r i 1
f dak no® ——cyn(1+ds S N M|, (A12)
(277)2 k2 ™ 2 a#f
and usingk - r =krcosg this becomes whereS’ is the same as in EGA3), but withr., Gy, Gy,
andT replaced byr., Gy, Gy, andT"’, respectively. The
fz” f“ ﬂ(eikrcos(gf(/;)eing (A8) second exponential is the correction from changipgo r
(2m)?J)o i ' in the zero modes of the interactions.
Now, by charge neutralityN,=>M ,=0. Therefore,
inein® redx S, sMNg=0. Also =,.;N,Nz=(=N,)?—EN23=—-2]
— A9 BT B B @
T 27 Juix J-n(X), (A9) and similarly X,.3sM Mg=-2k, so that the last

exponential in Eq.(A12) becomes (% dl)~ 2@/ (1

+dl)~2k(@gl4m \With these contributions, the renormaliza-
tion of yy andy,, is

where we have introduced the Bessel functign Due to the

oscillatory nature of the Bessel function, the integral is dom|-

nated by the infrared so we employ the asymptotic form
Jn(X)~(1/n!)(x/2)" to obtain

2N
. N=YnNT YNl 2— —dl,
(il)n " fl X In| yN yN 4,”_)
¢ 1=
27_m!e const+ r/dex 5 , (A10)
where the negative sign refers n6<0. For the case#0, Yu=Ymt+Yml 2— Z—O)dl (A13)
ko

the infrared part converges and we are left with a function of
the spatial angleb independent of. For the casen=0, we
obtain a logarithmic divergence m Using the cutoffr ., the
precise form for then=0 contribution to the interaction
functions is

to lowest order iry. At this point, the partition function is in
the same form as in EqA2), except thatr. has been re-
placed byr., and the Fourier coefficients and fugacities
have changed according to E¢87) and (A13). This com-
pletes the renormalization-group program and gives us the
(A11)  the differential renormalization-group flow equatio(ts?)
stated in the text.

— =
(2m)?% K? 2m

f d?k ek’ 1

c
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