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Renormalization-group analysis of coupled superconducting order and stripe order
in 1¿1 dimensions

Henry C. Fu
Department of Physics, University of California at Berkeley, Berkeley, California 94720

~Received 21 October 2002; published 28 March 2003!

In this paper, we perform a renormalization-group analysis in the (111)-dimensional version of a previ-
ously proposed effective-field theory describing~quantum! fluctuating stripe and superconductor orders. We
find four possible phases corresponding to stripe order/disorder combined with superconducting order/disorder.
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I. INTRODUCTION

In La22xSrxCuO4 compounds, there are three we
established ordering tendencies: antiferromagnetism, su
conductivity, and charge/spin stripes.1 Some experiments in
dicate that stripes and superconductivity can even coexis
these compounds.2 Furthermore, neutron-scattering expe
ments by Lakeet al.3 show that a moderate magnetic fie
can have large effects on the incommensurate magnetic
tuations. This is widely taken as evidence suggesting
stabilization of stripes by the magnetic field.

In mean-field theory, when two order parameters are
close competition it is possible for them to coexist in a c
tain region of the phase diagram.4 In such a coexistence re
gion, quantum fluctuations of both order parameters do
nate the low-energy physics. In a recent paper, L5

examined such a situation. The paper described how
Goldstone modes of stripe and superconducting orders
their respective topological defects interact.

We stress that the theory presented in Ref. 5 differs
important ways from the conventional self-dual charg
density wave/superconductivity action in one dimension.
deed, in one dimension the displacement field of the cha
density wave is conjugate to the phase of t
superconducting order. As a result the charge-density w
and the superconducting orders are mutually exclusive~i.e.,
whenever superconducting susceptibility strongly diverg
the charge-density wave susceptibility does not and v
versa!. In contrast, in the theory of Ref. 5 there exists
generic region in the phase diagram where both orders e

In this paper, we examine in detail a one-dimensional a
log of the model studied in Ref. 5. The motivation for this
that well-developed calculational methods~such as the
renormalization-group! can be used to analyze the pha
structure of the model. This can be used to check the corr
ness of the asserted phase structure in Ref. 5.

Now we describe the theory proposed by Lee.5 Since the
stripe order is a one-dimensional charge-density wave
Goldstone mode~i.e., stripe displacement! is aU(1) scalar.5

The superconducting order, of course, also possesses aU(1)
Goldstone mode. The important question is: how do th
two U(1) modes couple together? A hint of how this co
pling works comes from the experimental fact that the per
of incommensurate spin correlation decreases as the do
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density increases. Motivated by this, Lee5 constructed the
following Lagrangian density:

L5
1

2Kfm
Jm

2 1
1

2Krm
qm

2 1Jmf̄0]mf01qx~ r̄0]xr02 ig1Jt!

1qt~ r̄0] tr02 ig2Jx!. ~1!

In the above,f05eius is the U~1! phase factor of the super
conducting order parameter, andr05eiup is the phase factor

of the stripe order. That is,up5(2p/l) x̂•u(x,t), with l the
stripe period andu(x,t) the displacement field of the strip
order.Jm and qm are auxiliary fields coupling to the supe
conducting and stripe phases, respectively. These auxi
fields have the physical interpretation of energy-moment
currents.~In this paper, greek indices run overx,t, and re-
peated indices are summed.!

Without the coupling (g1,250), integrating outJm andqm

produces the field theory for two independent U~1! Gold-
stone modes and their respective vortices. The effect of
coupling is to favor stripe displacementu in the presence of
local charge imbalanceJt .

To analyze Eq.~1!, Lee used a duality transformation plu
an educated guess about the four possible quantum ph
corresponding to combinations of stripe and superconduc
order/disorder. In this paper, we study a one-dimensional
sion of Eq. ~1!, applying the well-developed techniques
duality transformation and the renormalization-group to d
termine the possible phases in a more unbiased fashion
find that all four combinations of stripe order/disorder a
superconducting order/disorder are stable phases. This
ports the conjectured phase structure in Ref. 5.

In the following, we use a real-space renormalization p
cedure similar to that used by Kosterlitz and Thouless to tr
the phase transition of the two-dimensional Coulomb gas6,7

In Sec. II, we derive the vortex action~the vortex of the
stripe order parameter is the dislocation!. In Sec. III we ob-
tain the renormalization-group recursion relations for t
coupling constants in that theory. As in the Kosterlit
Thouless theory, we make the small vortex fugacity appro
mation. We analyze the implications of these flows for pha
stability in Sec. IV.
©2003 The American Physical Society15-1
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II. DUALITY TRANSFORMATION TO TWO-SPECIES
COULOMB GAS

Following the work of Joseet al.7 we first perform a du-
ality transformation and write the theory in terms of vort
degrees of freedom.

Starting with Eq.~1!, we first separate the phase off0 and
r0 into a topologically trivial part and a topologically non
trivial part:

f05eih0f,

r05ei j0r. ~2!

In the above,h0 and j0 are single valued, whilef and r
contain configurations with nonzero windings. After integr
ing over the topologically trivial phases (h0 ,j0), we obtain
two conservation laws,

]mJm50,

]mqm50. ~3!

To explicitly fulfill these conservation laws, we writeJm
5emn]nL andqm5emn]nx, wherex andL are scalar fields.
Substitution leads to

L5
1

2Krm̄

~]mx!21
1

2Kfm̄

~]mL!21emn]nLf̄]mf

1emn]nxr̄]mr1 ig1] tx]xL1 ig2]xx] tL. ~4!

In the above the indexm̄ denotesx if m is t and vice versa.
Upon integrating by parts and identifying the vortex den
ties N5 i emn]n( r̄]mr) and M5 i emn]n(f̄]mf), the La-
grangian density becomes

L5
1

2Krm̄

~]mx!21
1

2Kfm̄

~]mL!21 iLM1 ixN

2 i ~g11g2!L] t]xx. ~5!

The above equation can be written in momentum space

L5
1

2
~x~k! L~k!!* S km

2

Krm̄

iGkxkt

iGkxkt
km

2

Kfm̄

D S x~k!

L~k!
D

1 i ~x~k! L~k!!* S N~k!

M ~k!
D , ~6!

whereG5g11g2. Integrating out thex and L fields then
produces
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L5
1

2
~N M!*

1

detS km
2

Kfm̄

2 iGkxkt

2 iGkxkt
km

2

Krm̄

D S N

M D , ~7!

det5S km
2

Krm̄
D S kn

2

Kfn̄
D 1G2kx

2kt
2 . ~8!

Equation ~8! is the starting point of our renormalization
group analysis. It describes a system of two interacting~an-
isotropic! Coulomb gases—the vortices of the supercondu
ing order parameter and the dislocations of the stripe or
parameter. Inspired by the work of Kosterlitz and Thoule
we perform a real-space renormalization-group analysis
Eq. ~8! in the following.

III. RENORMALIZATION GROUP ANALYSIS

Equation ~8! is more complicated than the one spec
Coulomb gas problem in two respects:~1! there are two spe-
cies of vortices and~2! the interactions are not rotationall
invariant ~i.e., the interaction depends not only on the d
tance between vortices but also on their relative orientatio!.
In order to complete the renormalization-group program
have to characterize the interaction in terms of a discrete
of coupling constants. One way of achieving this is to Fo
rier transform the angular dependence of the vortex-vor
interaction. In momentum space each element of the inte
tion matrix is of the formG(k)5G(k,u)5g(u)/k2 (u is the
angle made byk and thekx axis!. Therefore, we expand eac
of these terms in a Fourier series, e.g.,g(u)5(nane( inu).
When transformed back into real space, our action then
comes

S5
1

2E d2R1d2R2N~R1!GN~R12R2!N~R2!

1M ~R1!GM~R12R2!M ~R2!

12M ~R1!iG~R12R2!N~R2!, ~9!

where

GN~R!5E d2k

~2p!2 S (
n52`

`

aneinuD eik•R

k2
, ~10!

GM~R!5E d2k

~2p!2 S (
n52`

`

aneinuD eik•R

k2
, ~11!

G~R!5E d2k

~2p!2 S (
n52`

`

cneinuD eik•R

k2
. ~12!

In the above

an5~21!na2n* ,

an5~21!na2n* ,
5-2
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RENORMALIZATION-GROUP ANALYSIS OF COUPLED . . . PHYSICAL REVIEW B67, 104515 ~2003!
cn5~21!nc2n* ~13!

to ensure that the interaction functions are real. We stress
because of the angular dependence of Eqs.~10!–~12!, GN ,
GM , and G depend not only on the distanceuR12R2u but
also on the relative orientation (R12R2)/uR12R2u. In gen-
eral, an and an are nonzero only for evenn. The physical
reason for this is indistinguishability of two charges of t
same type~for details, see the Appendix!. cn can be nonzero
for both odd and evenn.

The limit where all thean , an , andcn are zero excepta0
and a0 describes two decoupled isotropic two-dimensio
X-Y models in their Coulomb gas representations—the K
sterlitz and Thouless problem. Before we attack Eq.~8!, as a
warm up, let us briefly review the Kosterlitz-Thouless resu
for the one-component system. In the renormalization-gr
approach one integrates out one pair of tightly bound dip
~i.e., a dipole with r c1drc, size ,r c) at a time. The
renormalization-group proceeds iteratively by treatingr c as a
running length scale. The two coupling constants in this c
are the vortex-vortex interaction strengtha0 and vortex
fugacity y5e2m, wherem is the core energy of vortices. I
the limit of y!1, the renormalization-group equations fora0
andy are given by

dy

dl
5yS 22

a0

4p D , ~14!

da0

dl
52py2a0

2 . ~15!

The above equations have the entirey50 axis as fixed
points. However, depending on whethera028p is positive/
negative, the fixed point is stable/unstable. The poiny
50,a058p is a critical point. Near it, the flow trajectorie
are given by

a0
22~4p!4y25C. ~16!

Here C is a constant labeling each trajectory. This flow
shown in Fig. 1. Note that theC50 separatrix y
5@1/(4p)4#(a028p) separates the basins of attraction f

FIG. 1. Renormalization-group flow for the Kosterlitz-Thoule
transition. The fixed points are at they50 axis. In our model this
corresponds to onlyy, a0 nonzero.
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the ordered and disordered phases. In the ordered phas
density of vortices renormalizes to zero (y→0) at large
length scales, signifying the presence of a bound dip
phase. In the disordered phase the density of vortices
creases (y increases! at large length scales, signifying th
existence of a vortex plasma~unbound dipole! phase.

The two-component vortex gas problem we are facing
not so different. However, we have to keep track of all t
Fourier coefficients in Eqs.~10!–~12! and examine how
they renormalize. Interestingly, even in the presence of th
anisotropic interactions, the Kosterlitz-Thouless renorm
ization-group program closes.

All the technical details are given in the Appendix. He
we just note the following point. Since the ‘‘Coulom
charge’’ of the superconducting vortices is not related to
Coulomb charge of the stripe vortices, only intraspecies
poles are possible. This implies that the positions of vorti
belonging to different species do not have to obey the c
straint that the minimum distance isr c . To lowest order iny
the resulting renormalization-group equations are given b

dyN

dl
5yNS 22

a0

4p D ,

dyM

dl
5yMS 22

a0

4p D ,

dan

dl
52p(

k,m
dn,k1m@yN

2 akam1yM
2 ~21!m11ckcm#,

dan

dl
52p(

k,m
dn,k1m@yM

2 akam1yN
2 ~21!m11ckcm#,

dcn

dl
52p(

k,m
dn,k1m~yN

2 ak1yM
2 ak!cm . ~17!

Note that the renormalization ofyN,M only depends on the
isotropic part of the coupling (a0 anda0). The renormaliza-
tion of an anisotropy coefficient,~e.g., an) includes many
terms. Each term is a quadratic function ofak , ak , or ck . If
we set all coupling constants excepta0 and a0 to zero we
recover the Kosterlitz-Thouless flow equations~for two sepa-
rate species!. It is easily verified that the condition fo
GN ,GM , and G to be real@an5(21)na2n* , etc.# is pre-
served by these flow equations. It is also clear from the fo
of these equations that these coefficients form a closed
under renormalization.

IV. PHASES OF THE TWO-SPECIES COULOMB GAS

Equation ~17! predicts fixed points foryM5yN50 and
an , an , cn can be anything. As in the normal Kosterlitz
Thouless case, we interprety50 as the absence of unboun
dipoles. From the first line of Eq.~17!, yN50 is linearly
stable whena0.8p. For a0.8p, the renormalization-
group bringsyN to larger values. Similar statements hold f
a0 and yM . This suggests the presence of four phases
5-3
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HENRY C. FU PHYSICAL REVIEW B 67, 104515 ~2003!
pending on whether the vortices ofN or M species form
dipoles or unbind.

However, this is not quite enough for our purposes. W
we really need to know is whether all four phases can
reached by varying the five parameters in Eq.~7!. Put in
another way, the physical system of Eq.~7! is in a five di-
mensional subspace of the infinite-dimensional space for
by thean , an , andcn . We need to check which phases c
be reached by trajectories originating in the physical s
space, not just which phases exist for the infinite dimensio
space.

In order to obtain a tractable problem, in the following w
concentrate on the case in whichKrm5Kr , Kfm5Kf and
GKr,f!1. WhenGKr,f are small, it is easy to evaluate th
Fourier coefficients in Eqs.~10!–~12! in powers ofGKr,f .
If GKr,f5O(e), we find that the leading contribution toan ,
an , cn is O(e unu/2). For the specific form of interaction in
Eq. ~7! it is simple to see that besides Eqs.~13! there are
additional constraints onan , an , andcn :

an5an50 unlessn54m,

cn50 unlessn54m12. ~18!

All of these conditions are preserved by the flow equatio
In terms of the original parameters in Eq.~7!, the nonvanish-
ing coefficients up to ordere are

a05Kr~12KfKrG2/8!,

a05Kf~12KfKrG2/8!,

c25c22* 5 iGKrKf/4. ~19!

In the following, we truncate the space considered to o
these coefficients, which is correct to lowest order ine. Fur-
thermore, this restricts us to a five-dimensional space of
rameters, which we can take to be independently determ
by the five parameters in Eq.~7!.

In this case, the flow equations~17! become

dyN

dl
5yNS 22

a0

4p D , ~20!

dyM

dl
5yMS 22

a0

4p D , ~21!

da0

dl
52p~yN

2 a0
22yM

2 uc2u2!, ~22!

da0

dl
52p~yM

2 a0
22yN

2 uc2u2!, ~23!

dc2

dl
52p~yN

2 a0c21yM
2 a0c2!. ~24!

First, by multiplying Eq.~24! by c2* and then adding the
result to its complex conjugate, we obtain
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duc2u2

dl
522p~yN

2 a01yM
2 a0!uc2u2. ~25!

Using this in Eqs.~22! and ~23! then gives us

da0

dl
52pyN

2 ~a0
21uc2u2!2

1

16p

duc2u2

dl
, ~26!

da0

dl
52pyM

2 ~a0
22uc2u2!2

1

16p

duc2u2

dl
. ~27!

At this point, we examine closely the region of parame
space around the critical point by making the change of v
ables

a5a028p,

a5a028p,

c5c22 c̄.

In the above,c̄ is the fixed point ofc2. After some algebra,
and keeping terms to lowest order ina, a, c, yN , andyM ,
the flow equations fora anda are

dyN
2

dl
5

1

2p
yN

2 a, ~28!

dyM
2

dl
5

1

2p
yM

2 a, ~29!

da2

dl
522pyN

2 a@~8p!21uc̄u2#2
a

16p

duc2u2

dl
, ~30!

da2

dl
522pyM

2 a@~8p!22uc̄u2#2
a

16p

duc2u2

dl
. ~31!

Finally, we can combine these equations to yield

d~a22XyN
2 !

dl
5

dCN

dl
52

a

8p

duc2u2

dl
, ~32!

d~a22XyM
2 !

dl
5

dCM

dl
52

a

8p

duc2u2

dl
. ~33!

Here,X5(4p)4(11uc̄u2/(8p)2). To understand these equa
tions, note that the quantity in parentheses on the left-h
side of each equation is precisely of the form of the cont
numbers for trajectories in the Kosterlitz-Thouless case@cf.
Eq. ~16!#, with the slope of the separatrix renormalized fro
@1/(4p)4# to 1/X. In the absence of interactions (c50),
these contour numbersCN andCM are conserved, but in the
presence of interactions, the renormalization-group pus
the flow from one contour to the next. Furthermore, by E
~32! and ~25!, for a.0 ~i.e., a0.8p) the contour number
CN increases, while fora,0 ~i.e., a0,8p) CN decreases.
Similarly for CM and a. The resulting flow is diagrammed
in Fig. 2.
5-4
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RENORMALIZATION-GROUP ANALYSIS OF COUPLED . . . PHYSICAL REVIEW B67, 104515 ~2003!
It is clear from this that for a trajectory originating belo
the separatrices@yN,(a028p)/X and yM,(a028p)/X],
the flow leads to bothyN andyM zero. In other words, there
is a stable phase with both types of vortices bound as
poles, corresponding to a stripe ordered/superconducting
dered phase. If the trajectory starts with (a028p),0 and
(a028p),0, the flow leads to bothyN andyM increasing
and unbound dipoles of both species. Thus, there is a s
disordered/superconducting disordered phase. Finally, in
mixed case, e.g.,yN,(a028p)/X and (a028p),0, yN
flows to zero butyM increases. Thus there are phases w
stripe disorder/superconducting order and stripe ord
superconducting disorder.

We have seen that with weak (g11g2) all four phases
corresponding to stripe order/superconducting order, st
disorder/superconducting order, stripe order/superconduc
disorder, and stripe disorder/superconducting disorder
stable and can be realized in the system described by L
theory in~111! dimensions@Eq. ~1!#. We emphasize that we
have analyzed only the case with isotropic couplingsKrm

FIG. 3. Phase diagram for interacting stripe and supercond
ing order, for isotropic couplingsKf andKr and weak interaction
G. Only theKf-Kr plane is shown. Although different values ofG
correspond to different long-range interactions,G does not control
the existence of stripe/superconducting order or disorder.

FIG. 2. Renormalization-group flow for weakly coupled sup
conducting~stripe! vortex gases, with contour numbersC labeled.
The fixed points are at they50 axis. With nonzero coupling, the
flow moves from one contour to the next as indicated by the arro
It is clear that even in the presence of coupling for each gas, t
are still two phases corresponding toy→0 andy increasing.
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5Kr and Kfm5Kf and weak coupling. In this case, th
phase diagram in theKf /Kr plane is shown in Fig. 3.

V. SUMMARY

The main results of this paper are the interacting Coulo
gas representation of the competing stripe and supercond
ing orders, Eq.~8!; and the renormalization-group flow, Eq
~17!. Analysis of these flow equations shows that the
11)-dimensional version of the theory proposed in Ref
supports stable phases corresponding to stripe or
superconducting order, stripe disorder/superconduc
order, stripe order/superconducting disorder, and st
disorder/superconducting disorder.
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APPENDIX: DETAILS OF
RENORMALIZATION-GROUP CALCULATION

Here we present the details for the renormalization of
system described by Eqs.~7! and ~8!, and parametrized in
Fourier coefficients via Eqs.~10!–~12!. The details closely
follow the procedure used by Joseet al.7 The basic idea is to
introduce a small length scale cutoffr c , and then integrate
out configurations with pairs of the same type of charge t
are r c1drc apart to find a new system with a longer min
mum length scale.

In our action, Eq.~9!, the fieldsN andM consist of point
charges, e.g.,N(r )5(aNad(r2ra). We will express the
terms, Eq.~9!, involving GN andGM as sums over pairs o
these charges. This results in the cancellation of all odd f
rier components ofGN andGM , i.e., an andan are zero for
oddn. To see this, note that in reexpressing the sum as a
over pairs, we combine terms likeNaNbGN(Ra2Rb)
1NbNaGN(Rb2Ra). The twoGN’s above differ by revers-
ing the relative vector~i.e., u→u1p). Since odd Fourier
components pick up a relative minus sign under this rever
they cancel each other, and only the even Fourier com
nents survive. On the other hand, since the terms withG
describe the interaction between distinguishable vortices,
cannot convert them into sums over pairs, and theref
the Fourier coefficientscn can be nonzero for both od
and evenn.

As in the Kosterlitz-Thouless case,GN and GM diverge
logarithmically at short length scales. In Eq.~7! this trans-
lates to divergence whenR15R2. To remove this diver-
gence, we must enforce charge neutrality ((aNa5(aMa
50) and impose a small distance cutoffr c .8 To account for
the microscopic physics lost in this procedure, we introdu
core energiesDN and DM for the vortices~charges!. After
this our action is written as

t-

-

s.
re
5-5
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S5 (
(a,b)

NaNbGN~Ra2Rb!1 (
(a,b)

MaMbGM~Ra2Rb!

1(
a,b

MaNbiGN~Ra2Rb!1(
a

Na
2DN1(

a
Ma

2DM ,

~A1!

where (a,b) denotes a sum over pairs anda,b denotes an
unrestricted sum over botha andb. At this point we make
the simplifying assumption thatDN and DM are very large,
so we may restrict toNa ,Ma561. Introducing the fugaci-
ties yN5e2DN and yM5e2DM, we can write the partition
function as a sum overj N dipoles andk M dipoles as

Z5(
j 50

`

(
k50

`

yN
2 j yM

2k 1

j ! 2

1

k! 2

3E d2x1

r c
2

•••

d2x2 j

r c
2 E d2z1

r c
2

•••

d2z2k

r c
2

e2S̃, ~A2!

S̃5 (
(a,b)

NaNbGN~xa2xb!1 (
(a,b)

MaMbGM~za2zb!

1(
a,b

MaNbiGN~za2xb!. ~A3!

The first step in the real-space renormalization proced
is to integrate over dipoles of sizer c1drc . Since yN ,yM
!1, we need only consider configurations with one dipole
either type. Furthermore, mixedM -N dipoles are not inte-
grated out because doing so would violate overall cha
neutrality for each species. This means that theM and N
charges are configured freely with respect to each ot
Writing out these single-dipole contributions, the partiti
function gains an extra factor:

e2 s̃→e2 s̃H 11E d2RN

r c
2 E

r c

r c1drc d2rN

r c
2

yN
2 e2SN8

1E d2RM

r c
2 E

r c

r c1drc d2r M

r c
2

yM
2 e2SM8 1O~y4!J ,

~A4!

SN8 52GN~rN!

1(
a

2k

NaS GNS RN1
rN

2
2xaD2GNS RN2

rN

2
2xaD D

1(
a

2 j

MaS iGS RN1
rN

2
2zaD2 iGS RN2

rN

2
2zaD D ,

~A5!
10451
re

f

e

r.

SM8 52GM~r M !

1(
a

2 j

MaS GMS RM1
r M

2
2zaD2GMS RM2

r M

2
2zaD D

1(
a

2k

NaS iGS RM1
r M

2
2xaD2 iGS RN2

rN

2
2xaD D ,

~A6!

whereR signifies the center andr the separation of the di
pole being integrated out. To obtain the above, we have u
the fact that the combinatorial factor forj 11 pairs of
charges, one of which is a dipole@i.e., (j 11)2/( j 11)!2],
is equal to the combinatorial factor ofj pairs of charges
~i.e., 1/j ! 2).

To proceed, rewrite Eqs.~A5! and ~A6! using identities
like „GN@RN1(rN/2)2xa#2GN@RN2(rN/2)2xa#…
5rN•“RN

GN(RN2xa). In Eq. ~A4!, these expressions ente
into exponentials, which we expand. The linear terms in t
expansion produce nothing interesting. To see this, note
there are two types of these terms: those with a gradient,
those without. The linear terms involving the gradient do n
contribute since their integral with respect tor is zero. The
linear terms involving no gradient@2GN(rN) and
2GM(r M)] integrate to constants independent ofj, k, and the
Na , Ma , so they merely produce an overall constant mu
plying the partition function.

Since the linear terms in the expansion of the exponent
of Eq. ~A4! are uninteresting, we look at the second-ord
terms. There are three types of terms here: those involv
no gradients~e.g., GNGN); those involving one gradien
~e.g., GNr•¹GN); and those involving two gradients~e.g.,
r•¹GNr•¹GN). The first type of term, with no gradients
integrates to a constant independent ofj, k, and theNa , Ma ,
so we ignore it.

The second type of term, with only one gradient, in
grates to zero. For example, one such expression
(aNaG(rN)rN•“RN

GN(RN2xa). However, in each term o

the sum, we can change integration variables toRN8 5RN

2xa producing*(aNaG(rN)rN•¹R
N8
GN(RN8 ). Charge neu-

trality then makes the sum overNa zero.
The third type of term, with two gradients, does contri

ute to renormalization. A typical term of this type is~using
the Fourier expansion ofG)

1

2!E d2RN

r c
2 E

r c

r c1drc d2rN

r c
2

yN
2 (

a,b
MaMb

3rN•“RNF i E d2k

~2p!2

1

k2 S ( cneinu Deik•(za2RN)G
3rN•“RNF i E d2k

~2p!2

1

k2 S ( cmeimu Deik•(zb2RN)G .

Using rN'r c(cosf,sinf) we can integrate overrN to obtain
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After many calculations like this and some algebra, we
tain a new partition function in the form of Eq.~A2! again,
except that the interaction functions have been redefine
GN8 , GM8 , andG8 via the new coefficients

an85an2p(
k,m

dn,k1m~yN
2 akam1yM

2 ~21!m11ckcm!dl,

an85an2p(
k,m

dn,k1m~yM
2 akam1yN

2 ~21!m11ckcm!dl,

cn85cn2p(
k,m

dn,k1m~yN
2 ak1yM

2 ak!cmdl. ~A7!

Heredl5drc /r c .
At this point, it is useful to examine more closely th

structure of the contributions to the interaction functions a
understand what sorts of interactions we are dealing with
this end, we evaluate a typical term

E d2k

~2p!2
einu

eik•r

k2

and usingk•r5krcosf this becomes

1

~2p!2E0

2p

duE
1/L

` dk

k
eikrcos(u2f)einu, ~A8!

5
i neinf

2p E
r / l

` dx

x
J2n~x!, ~A9!

where we have introduced the Bessel functionJn . Due to the
oscillatory nature of the Bessel function, the integral is dom
nated by the infrared so we employ the asymptotic fo
Jn(x);(1/n!)(x/2)n to obtain

~6 i !n

2pn!
einfH const1E

r /L

1

dx
1

x S x

2D unuJ , ~A10!

where the negative sign refers ton,0. For the casenÞ0,
the infrared part converges and we are left with a function
the spatial anglef independent ofr. For the casen50, we
obtain a logarithmic divergence inr. Using the cutoffr c , the
precise form for then50 contribution to the interaction
functions is

E d2k

~2p!2

eik•r

k2
52

1

2p
lnU r

r c
U. ~A11!
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Thus, in the interaction terms only the zero-mode Four
component has any mention ofr c . To complete the
renormalization-group program, we must write the partiti
function in a form containing only the renormalized core s
r c85(11dl)r c . After we do this, the partition function is~up
to an overall constant!

Z5(
j 50

`

(
k50

`

yN
2 j yM

2k~11dl !4k14 j
1

j ! 2

1

k! 2E d2x1

r c8
2
•••

d2x2 j

r c8
2

3E d2z1

r c8
2
•••

d2z2k

r c8
2

exp~2S̃8!

3expH 2
1

2p
a08ln~11dl !

1

2 (
aÞb

NaNb

2
1

2p
a08ln~11dl !

1

2 (
aÞb

MaMb

2
i

p
c08ln~11dl !

1

2 (
aÞb

NaMbJ , ~A12!

whereS8̃ is the same as in Eq.~A3!, but with r c , GN , GM ,
andG replaced byr c8 , GN8 , GM8 , andG8, respectively. The
second exponential is the correction from changingr c to r c8
in the zero modes of the interactions.

Now, by charge neutrality(Na5(Ma50. Therefore,
(a,bMaNb50. Also (aÞbNaNb5((Na)22(Na

2522 j
and similarly (aÞbMaMb522k, so that the last

exponential in Eq. ~A12! becomes (11dl)22 j (a08/4p)(1

1dl)22k(a08/4p). With these contributions, the renormaliz
tion of yN andyM is

yN8 5yN1yNS 22
a0

4p Ddl,

yM8 5yM1yMS 22
a0

4p Ddl ~A13!

to lowest order iny. At this point, the partition function is in
the same form as in Eq.~A2!, except thatr c has been re-
placed by r c8 , and the Fourier coefficients and fugacitie
have changed according to Eqs.~A7! and ~A13!. This com-
pletes the renormalization-group program and gives us
the differential renormalization-group flow equations~17!
stated in the text.
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