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Motivated by our desire to understand the biophysical mechanisms underlying the swimming of sperm
in the non-Newtonian fluids of the female mammalian reproductive tract, we examine the swimming of
filaments in the nonlinear viscoelastic upper convected Maxwell model. We obtain the swimming velocity
and hydrodynamic force exerted on an infinitely long cylinder with prescribed beating pattern. We use
these results to examine the swimming of a simplified sliding-filament model for a sperm flagellum.
Viscoelasticity tends to decrease swimming speed, and changes in the beating patterns due to viscoelas-
ticity can reverse swimming direction.
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The physical environment of the cell places severe con-
straints on mechanisms for motility. For example, viscous
effects dominate inertial effects in water at the scale of a
few microns. Therefore, swimming cells use viscous re-
sistance to move, since mechanisms that rely on imparting
momentum to the surrounding fluid, such as waving a rigid
oar, do not work [1,2]. The fundamental principles of
swimming in the low-Reynolds number regime of small-
scale, slow flows have been established for many years [2–
5], yet continue to be an area of active research. However,
when a sperm cell moves through the viscoelastic mucus of
the female mammalian reproductive tract, the theory of
swimming in a purely viscous fluid is inapplicable.
Observations of sperm show that they are strongly affected
by differences between viscoelastic and viscous fluids. In
particular, the shape of the flagellar beating pattern as well
as swimming trajectories and velocities depend on the
properties of the medium [6–8].

The interplay of medium properties and flagellar motil-
ity or transport also arises in other situations, such as
spirochetes swimming in a gel [9], and cilia beating in
mucus to clear foreign particles in the human airway [10].
Motivated by these phenomena, we develop a theory for
swimming filaments in a viscoelastic medium. To leading
order in the amplitude of the deflection of the filament,
there are two corrections to the swimming velocity when
the medium changes from Newtonian to non-Newtonian.
The first depends only on the properties of the medium, and
we elucidate it by analyzing an infinite filament with a pre-
scribed beating pattern in a fluid described by the upper
convected Maxwell (UCM) model [11]. Our results extend
the findings of Lauga [12], who considered a variety of fad-
ing memory models for the case of a prescribed beat pat-
tern on a planar sheet. The second correction to the swim-
ming speed arises because the nature of the medium affects
the beating pattern of a filament. We elucidate this effect
using a simple model flagellum with active internal forces.

Newtonian fluids are characterized by a simple constit-
utive relation, in which stress is proportional to strain rate.
Non-Newtonian fluids cannot be characterized by a simple
universal constitutive relation, and exhibit a range of phe-
nomena such as elasticity, shear thinning, and yield stress
behavior. We choose to focus our attention on fluids with
fading memory, in which the stress relaxes over time to the
viscous stress. We consider small-amplitude deflections of
an infinite filament of radius a (Fig. 1). Since the swim-
ming velocity of a filament is second order in the deflection
amplitude [3,4], linear models for fading memory such as
the Maxwell model are insufficient for studying swimming
[12]. Therefore, we use a simple nonlinear constitutive
relation incorporating elastic effects, the UCM model.
This model is appropriate for a polymer solution in which
the viscosity of the Newtonian solvent is disregarded:

 � � ��̂ � � _�: (1)

In this equation � is the deviatoric stress, � is the relaxation
time, �̂ � @t� � v � r� � �rv�T � � � � � rv is the upper-
convected time derivative of �, v is the velocity, � is the
polymer viscosity, and _� � rv� �rv�T is the strain rate.
The nonlinear terms of the upper-convected derivative
make the constitutive relation insensitive to translational
and rotational motion of material elements [11]. The UCM
fluid responds as an elastic solid when subject to a rapidly
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FIG. 1. Cylinder with imposed traveling-wave transverse dis-
placement. The dark lines indicate filaments in the active flagel-
lum model. The active elements inside the flagellum represent
motors that slide the filaments relative to each other.
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varying stress, and as a viscous liquid when subject to a
slowly varying stress. When � � 0, the constitutive rela-
tion (1) is Newtonian. Since inertia is unimportant, the
motion of the medium is governed by force balance,
�rp�r � � � 0, or

 � �1� �@t�rp� �r2v � �r � T; (2)

where T � v � r� � �rv�T � � � � � rv, and we have as-
sumed incompressibility, r � v � 0.

To calculate the swimming velocity of the filament, we
prescribe a beating pattern that is independent of load, and
solve (2) for the flow, imposing no-slip boundary condi-
tions at the filament surface. Material points on the fila-
ment surface are parameterized by z and  (see Fig. 1), and
are given by

 r �z;  ; t� � �h�z; t� � a cos� ��x̂� a sin� �ŷ � zẑ; (3)

where h�z; t� � Re
P
q;!hqw exp�iqz� i!t�. Note that we

work in the frame in which material points of the cylinder
move in planes of constant z. We will find that the no-slip
boundary conditions can only be satisfied if there is a
uniform flow along the z axis. In the lab frame in which
the fluid is at rest at infinity, the flow corresponds to the
swimming velocity of the cylinder.

Invoking small amplitude, long wavelength distortions
for simplicity, we solve the equations order by order in the
displacement amplitudes qhq!, to lowest order in
1= logqa, and assuming that hq!=a	 1. Expressing the
dynamic variables as expansions in qhq!, such as v �
v�1� � v�2� � . . . , the no-slip boundary condition _h�z; t�x̂ �
v�r�z;  ; t�� up to second order is

 

_h x̂ � v�1� � v�2� � h�cos r̂� sin �̂� � rv�1�; (4)

where h is evaluated at (z, t), and v, r̂, and �̂ at cylindrical
coordinates (a,  , z, t). We used the fact that the material
point labeled  on the cylinder surface has coordinates
��; r; z� 
 � � �h=a� sin ; a� h cos ; z�. There is no
first order contribution to T and the first order dynamical
equations are

 �1� �@t��
�1� � � _��1�; (5)

 �1� �@t�rp
�1� � �r2v�1�; (6)

with r � v�1� � 0. Since Eq. (6) is the Stokes equation with
a modified pressure, the solution is readily found [13], and
the first order flow v�1� is the same as in the purely viscous
case in the limit qa	 1. The formulas for this flow are
given by Taylor in [4]. Just as in Taylor’s case, the swim-
ming velocity vanishes to first order in qhq!. Using the
pressure and stress, we find that the force per unit length is
purely in the x̂ direction:

 f �1�fluid�z; t� � Re
X
q;!

�4��i!hq!
�1� i�!� logqa

eiqz�i!tx̂: (7)

This is consistent with the results of Fulford, Katz, and

Powell, who used resistive force theory for a filament in a
linear Maxwell fluid, and found that for a prescribed beat-
ing pattern the swimming velocity is the same as in the
viscous case, even to second order in qhq! [14].

In our problem, however, the nonlinearities make the
viscoelastic swimming velocity different from the viscous
swimming velocity. To second order,

 �1� �@t��
�2� � � _��2� � �T�2�; (8)

 �1� �@t�rp
�2� � �r2v�2� � �r � T�2�; (9)

where T�2� can be calculated using only the first order
stresses and velocity fields. To find the time-averaged
swimming velocity, we need only examine the velocity
fields averaged over time and �. To second order, we
find that there is a uniform flow at infinity, corresponding
to a swimming velocity in the lab frame of

 U �2� � �
1

2

X
q;!

jhq!j
2q!

1� ��!�2
ẑ: (10)

For a single traveling wave the direction of swimming is
opposite the direction of motion of the traveling wave. Our
result, valid to first order in 1= log�qa�, is the same as that
for a traveling wave on a planar sheet [12].

We have dealt with the effects of viscoelasticity on a
swimming filament with prescribed shape h�z; t�. In con-
trast, the beating patterns and the swimming velocity of
real sperm are affected by the medium, suggesting that
prescribing the shape changes of the swimmer may miss
important effects. Therefore, we consider a sliding-
filament model in which we prescribe active internal bend-
ing forces [15,16], and solve for flagellum shape as well as
swimming speed. We continue to assume the flagellum has
a cylindrical cross section and deflection hx̂, but now we
assume the flagellum has finite length L and two inexten-
sible longitudinal filaments with constant lateral spacing
2a (Fig. 1). Motors along the flagellum attach to both
filaments and tend to slide them past each other. Sliding
is prohibited at the end near the head, which is omitted for
simplicity. Assuming a planar shape of the flagellum, the
moment M � Mŷ acting at a cross section of the flagellum
consists of a passive resistance to bending, and an active
part due to the sliding motors. To first order in deflection h,

 M�z� � Ah00 � 2a
Z L

z
fmdz; (11)

where A is the bending stiffness, primes denote derivatives
with respect to z, and fm is the force per unit length that the
lower filament of Fig. 1 exerts on the upper filament. For
simplicity we disregard any elastic or viscous effects aris-
ing from proteins linking the filaments.

The balance of internal forces and hydrodynamic forces
determines the instantaneous shape of the flagellum
[17,18]. To find the internal force per unit length fint,
consider moment balance on an element of the flagellum
to first order in deflection [19]: M0 � N � 0, where N is
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the shear force acting on a cross section in the x direction.
Using fint � N0 yields fint � �Ah

0000 � 2af0m. We choose
a sliding force fm � Re�f exp�ikz� i!t��. To linear order,
the shape change occurs with only one frequency !, and
h�z; t� � Re�~h�z� exp��i!t��.

Since the internal forces fint are expressed in real space,
it is convenient to write the hydrodynamic force Eq. (7) in
real space. The logarithm in Eq. (7) varies slowly with q
and we replace it with a constant, log�qa� 
 log�a=L�, as
is commonly done in resistive force theory. Thus

 f fluid � Re
��?

1� i�!
��i!~h�z�e�i!t�x̂; (12)

where �? 
 4��= log�L=a�. It is sufficient to consider
shape changes at linear order because the swimming speed
is already second order in deflection. Note that although we
use the same linear hydrodynamic force as Fulford, Katz,
and Powell [14], they only consider one fixed waveform
and do not allow beating patterns to respond to the change
in hydrodynamic forces.

We nondimensionalize our equations of motion by mea-
suring lengths in terms of L, fm in terms of A=�2aL2�, and
time in terms of !�1. For notational simplicity, after scal-
ing we use the same symbols for the new quantities. The
equation of motion for the active flagellum is fint � ffluid �
0, or in nondimensional form,

 

�iSp4

1� iDe
~h� ~h0000 � ikf � 0: (13)

The dimensionless ‘‘sperm number’’ Sp � L�!�?=A�1=4 is
the fourth root of the ratio of the bending relaxation time of
the flagellum to the period of the traveling wave, and the
Deborah number De � �! measures the importance of
elastic effects. Following [16], we estimate L � 40 �m,
a � 20 nm, A � 4� 10�22 N m2, !=�2�� � 30 s�1, and
�? � 2� 10�3 N s m�2, and a dimensional magnitude of

internal sliding forces fm � 4 pN=�24 nm�. Therefore,
Sp 
 7, and the dimensionless amplitude f 
 13. For
sperm which oscillate at frequency 25–50 Hz in cervical
mucus with time constant � 
 1–10 s [20], we take De 

100. Equation (13) must be supplemented by boundary
conditions. For simplicity we forbid transverse motion of
the head h�0� � 0, and suppose the connection between the
head and the flagellum cannot support a moment: h00�0� �R

1
0 fm�z�dz � 0 (see [21] for a more realistic treatment of

the moment boundary condition). The boundary condition
at the other end is zero force, �h000�1� � fm�1� � 0, and
zero moment, h00�1� � 0.

Representative plots of the beating patterns are shown in
Fig. 2 (see supplementary material [22]). Two length scales
are apparent. The first is the wavelength of the sliding
force, 2�=k, readily apparent in the change of beating
patterns from k � 0 to k � 8�=L at Sp � 7. The second
length scale � arises from the interaction of bending and
hydrodynamic forces: �=L � j1� iDej1=4=Sp. The flagel-
lum behaves like a rigid rod for large �=L, and is floppy for
small �=L. Changing the viscoelastic properties of the fluid
affects the beating shapes through � (e.g., compare beating
patterns for De � 0 and De � 100 in the flagellum with
k � 8�=L and Sp � 7). In Fig. 2, the amplitude of the
sliding force is selected so that the maximum displacement
of the flagellum is L=10. As De increases, � increases and
so smaller driving forces are required. The beating pattern
is linear in the driving force, so the results for constant
driving force can be deduced from the forces provided in
Fig. 2. Besides affecting �, viscoelasticity affects phase
behavior: for De � 0, beating patterns are traveling waves,
while for large De they are standing waves.

By inserting the beating pattern hq! into Eq. (10), we
can calculate the swimming speed of a flagellum with
prescribed internal forces. Although our flagellum is finite,
we may apply Eq. (10) to our calculated beating pattern by
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FIG. 2 (color). Dimensionless amplitude h=L versus dimensionless arclength s=L for beating flagella with internal sliding forces.
We show a half-cycle (red, orange, green, light blue, blue) of the pattern for viscous (De � 0) and viscoelastic (De � 100) cases. For
Sp � 7, we show internal sliding forces with k varying from 0 (uniform force) to 8�. For k � 8�=L we show the effect of varying
sperm number. � is indicated on the k � 0 plots. The amplitude is linear in the driving force; at the top of each plot, we write the
(dimensionless) magnitude f required to produce motion with amplitude 0:1L.
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periodically replicating it to infinite extent in z. Physically,
we are ignoring end effects. It is useful to rewrite Eq. (10)
in real space, for an infinite flagellum with period L and
single oscillation frequency !:

 U �2� � �
1

2L�1� De2�

Z L

0
h _h�z; t�h0�z; t�idzẑ; (14)

where the dot denotes the time derivative and the brackets
denote time averaging. The swimming velocity is indepen-
dent of whether we consider the period L or nL; thus, the
periodically replicated flagellum has the same velocity as
the single flagellum, up to end effects.

The velocities of active flagella are plotted in Fig. 3.
Viscoelastic effects can produce qualitative changes in the
swimming velocity. Most notably, as De is increased, the
velocity can change direction, for example, in the case of
k � 8�=L. For De � 0, there is a small-amplitude travel-
ing wave moving in the �ẑ direction with wavelength

L=4 driven by the sliding forces, but there is also a larger
amplitude traveling wave moving in the �ẑ direction
(Fig. 2). A filament swims in the opposite direction of
the motion of its traveling waves, so these have opposing
effects, but the net velocity is in the �ẑ direction. As De
increases, the larger amplitude wave becomes a standing
wave, and the remaining small-amplitude traveling waves
move the flagellum in the�ẑ direction. We emphasize that
this effect is not due to the (1� De2) correction of
Eq. (14), which can never reverse the swimming direction.
For swimming in viscoelastic fluids it is crucial to allow
flagellum shapes to respond to changed forces rather than
prescribe fixed beating patterns.

We conclude by indicating directions for future work. It
is important to pursue numerical approaches to study the
effects of free ends and large displacements. More realistic
models for polymer solutions should also be explored,
since the UCM model is invalid for sufficiently high ex-
tensional flows. A further extension of our work would be
to consider swimming in a gel, which is a better model for
mucus. Finally, it is important to determine if the internal

motor forces on the filaments are dependent on the load, as
suggested by the fact that the beating frequency depends
upon the medium [6–8]. An alternative experimental ap-
proach which sidesteps the uncertainty about internal
workings of flagella would be to study magnetically driven
artificial swimmers [23] in polymer solutions; our analysis
can be easily adapted to this case.
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FIG. 3. Dimensionless swimming velocities versus De, for
Sp � 7 for k � 0 (long dashes), k � 3�=L (short dashes), k �
8�=L (solid). For each wave vector, the magnitude of the driving
force is chosen so that the maximum deflection amplitude at
De � 0 is 0:1L. Detail of the same plot (inset) shows that
viscoelastic effects can reverse the swimming direction.
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