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Teaching the Difference Between Stiffness and Damping
Henry C. Fu and Kam K. Leang

The simple spring, mass, and damper system is ubiq-
uitous in dynamic systems and controls courses [1]. 
This column considers a concept students often have 

trouble with: the difference between a “soft” system, which 
has a small elastic restoring force, and a “damped” system, 
which dissipates energy quickly. In part, this confusion 
arises because softness and damping often come together 
in many everyday materials and systems. For example, 
probably the most obvious stiff (not soft) materials are met-
als, which are also very undamped, while highly damped 
plastics are much softer than metals.

This misconception is reinforced by the canonical 
example of a mass acted upon by a spring and a damper 
in parallel as illustrated in Figure 1(a). This classic parallel 
mass-spring-damper system is used to model the dynam-
ics of piezoelectric actuators [2], [3], vehicle suspension 
systems [4], and gait-training equipment [5], for example. 
One way to measure the character of the response of such a 
system is to look at the Q factor of its resonance (see “The Q 
Factor”). For the parallel mass-spring-damper system, the 
Q factor at the resonant frequency is /Q mk c. , where m 
is the mass, k is the spring constant, and c is the damping 
coefficient. Thus, increasing the spring constant k makes 
the behavior of the system more elastic and increases the 
Q factor, while decreasing the spring constant makes the 
system more damped and decreases the Q factor. However, 
stiffness and damping are not always correlated, and this 
column presents several examples to motivate a classroom 
discussion.

In contrast to the parallel spring-mass-damper, in the 
series mass-spring-damper system the stiffer the system, 
the more dissipative its behavior, and the softer the sys-
tem, the more elastic its behavior. Thus teaching systems 
modeled by series mass-spring-damper systems allows 
students to appreciate the difference between stiffness and 
damping.

To get students to consider the difference between soft 
and damped, ask them to consider the following scenario: 
suppose a bullfrog is jumping to land on a very slippery 
floating lily pad as illustrated in Figure 2 and does not 
want to fall off. The frog intends to hit the flower (but 
cannot hold onto it) in the center to come to a stop. If the 
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 necessary step in the design of an effective control system 

is to understand its dynamics. It is not uncommon for a 

well-trained control engineer to use such an understanding to 

redesign the system to become easier to control, which requires 

an even deeper understanding of how the components of a 

system influence its overall dynamics. In this issue Henry C. 

Fu and Kam K. Leang discuss the difference between stiffness 

and damping when understanding the dynamics of mechanical 

systems.

High Q, Large k

Low Q, Small k

20

(b)

0

–20

–40

M
ag

ni
tu

de
 (

dB
)

1 2
Frequency (rad/s)

5 10 20 50

x c

k

(a)

mF

Figure 1  (a) The classic parallel mass-spring-damper system 
with mass m, damping constant c, and spring constant k [1]. (b) 
Response magnitude versus frequency for parallel spring-damper 
system with m = 0.1 kg and c = 0.02 kg/s. Solid line (blue): 
k = 1 kg/s2; dashed line (red): k = 100 kg/s2. For the parallel system, 
increasing the spring stiffness (k) increases the resonant frequency 
and leads to more elastic behavior, reflected in the larger Q factor. 
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flower (and stem) is modeled as a spring, does the frog 
want the spring to be stiff or soft? To guide the students’ 
thinking, point out that the lily pad is free to move on the 
water surface but will feel a drag force, so it can be mod-
eled as a damper (dashpot). Because the slippery lily pad 
does not exert lateral force on the frog, the entire system 
can be modeled as the mass-spring-damper in series, not 
parallel, as shown in Figure 3(a) with frog’s mass m, spring 
constant k, and damping constant c. (This neglects the mass 
of the lily pad, which is justified as long as the frog is much 
heavier than the pad.)

What type of response does the frog want to see when it 
hits the flower at landing velocity? If the system has an elastic 
spring-like response, it will store the frog’s energy and then 
return the energy, eventually pushing the frog backwards 
and off the slippery lily pad into the water. On the other 
hand, if the system has a damped response, it can dissipate 
the frog’s energy so that the frog and the lily pad come to 
a stop together. Presented with this scenario, most students 
reply that to make the system damped the flower should be 
a soft spring, possibly due to their experience with materials 
and the parallel mass-spring-damper system in Figure 1(a).

However, the key to this example is that the series 
mass-spring-damper system offers more damping for 
a stiffer spring constant. To rationalize this, imagine 
that the spring is very soft—then upon impact, forces 
are low and the damper hardly moves while only 

the spring deforms. Before the damper can dissipate 
energy, the spring rebounds and sends the frog back 
in the opposite direction. This example demonstrates 
that softness and damping need not go together; it is 
perfectly possible to have a stiff damped system as well 
as a soft undamped system.

Analyzing the Q factor of the resonant response of the 
series system further emphasizes that the system is less 
damped when soft. A glance at the frequency-dependent 
response for two different spring constants [Figure 3(b)] 
shows that increasing the spring constant k increases the 
resonance frequency with the familiar square root depen-
dence on k but decreases the Q factor of the resonance. Thus, 
the stiffer the system, the more dissipative its behavior; 
while the softer the system, the more elastic its behavior. 
This behavior is completely opposite from the more familiar 
case of the parallel spring and damper system: for large Q 
factors, the series system has /Q c mk.  while the parallel 
system has /Q mk c. .

A student might ask: Is this model just a contrived 
example, or does it apply to any real systems? Viscoelastic 
fluids provide a real-life application. Viscoelastic behavior 
often results from polymeric solutions, in which the dis-
solved polymers behave like springs (Figure 4). Flows can 
stretch out the polymers, triggering an elastic response, but 
over a time constant determined by the viscous drag on the 
polymer and the elastic stiffness of the polymer molecules, 
the polymer relaxes back to it unstretched state and the 

The Q Factor

The Q factor of a resonator is defined as 2r  times the 

ratio of the maximum energy stored in the resonator to 

the energy dissipated in the resonator during one cycle. The 

Q factor is a dimensionless parameter that provides a quali-

tative measure of whether a system has elastic or damped 

behavior. A system with purely elastic behavior, such as a 

mass attached to a spring, dissipates no energy and so has 

an infinite Q factor; a system with purely damped behavior 

stores no energy so has zero Q factor. On a plot of the fre-

quency-dependent response of a system, for a sharp reso-

nance the Q factor is approximately the resonant frequency 

divided by the width of the resonance [see Figure 1(b)].

Figure 2  A bullfrog landing on a slippery lily pad will be stopped 
by the flower. Does the frog want the flower to be a soft or stiff 
spring? 
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Figure 3  (a) The bullfrog system can be modeled as a mass-
spring-damper in series. (b) Response magnitude versus frequen-
cy for series spring-damper system with m = 0.1 kg and c = 50 
kg/s. Solid line (blue): k = 1 kg/s2; dashed line (red): k = 100 kg/s2. 
Increasing the spring stiffness (k) leads to more damped behavior, 
reflected in the smaller Q factor.
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elastic response fades. A common simple model of a visco-
elastic fluid is the Maxwell constitutive equation, in which 
the (deviatoric) stress x  [6] obeys

	 ,
t2
2x m x hc+ =- o � (1)

where m  is the time constant, h  is the viscosity of the fluid, 
and co  is the strain rate in the fluid. For flows with a typical 
frequency ~ , the behavior of a viscoelastic fluid is char-
acterized by its “Deborah number,” De ~m= . For a high 
Deborah number, the fluid has elastic response, while for 
a small Deborah number, the fluid has viscous response. 
In the limit 0,"m  0De "  and the constitutive law reduces 
to that of a usual Newtonian fluid, for which the stress is 
given by product of viscosity and strain rate.

What does this example have to do with our series 
spring-damper system? Since the spring-like polymers are 
suspended in the fluid and have viscous damping drag, the 
Maxwell fluid can be represented by a spring and damper 
in series. Indeed, the time constant m  can be written in 
terms of the viscosity h  and modulus G of the fluid as 

/Gm h= . For the same reasons as in our series model, the 
stiffer the system (larger G) the more it behaves as a fluid 
(small De), and the softer the system (smaller G) the more it 
behaves as an elastic solid (large De).

More insight into the series spring-damper model can 
be gained by constructing an electrical analogy consisting 
of a resistor and capacitor in parallel driven by a current 
source [Figure 5(a)]. For a sinusoidal current source with 
amplitude I0 and frequency ~ , the average power dissi-
pated is plotted in Figure 5(b) as a function of the resis-
tor resistance R. For a purely resistive circuit, it is expected 
that the power should be /I R 20

2 . However, this behavior is 
only obtained for small R; for large R, there is much less 
power dissipated, and the dissipation decreases as the 
resistance R increases!

One way to understand this result is to observe that as 
the resistance R increases, more and more of the current 
flows through the capacitor. For high resistance, the behav-
ior is dominated by the capacitance, and only for small R 
does the resistor see most of the current. This suggests a 
way to understand the series spring and damper in Fig-
ure 2(a). In that case, the total displacement of the mass 
is the sum of the spring and damper displacements. Just 
as increasing the resistance shunted more current to the 
capacitor, increasing the stiffness of the spring shunts more 
of the displacement to the damper, leading to behavior 
dominated by the damping element. In the limit of infinite 
spring constant, the spring is simply a rigid element and all 
the displacement is in the damper, so the response is com-
pletely damped.

Introducing the frog model shows students that soft-
ness and damping are independent properties of a system. 
Then, by examining a spring and damper in series, the stu-
dents see how to model real systems that have the counter-

intuitive combinations of being stiff and damped or soft 
and undamped. Including these examples in addition to 
the more familiar parallel spring and damper model pre-
vents the accidental reinforcement of the misconceptions 
that stiffness and damping always go together, or are even 
the same thing.
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Figure 5  (a) Current driven resistor and capacitor in parallel. (b) 
Average power dissipation of the circuit is proportional to resist-
ance only for small resistance R. Power dissipation decreases as 
resistance increases for large resistance.
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Figure 4  Elastic polymer molecules in solution lead to a fluid 
with viscoelastic response and can be modeled as a spring and 
damper in series.


